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Sources of redundancy in Neural Networks
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- Redundancy in the number of weights

- Redundancy in the bit representation of
weights

- Redundancy in the intermediate results
- Redundancy in the bit representation of
intermediate results

Opportunity: There is a lack of a
unifying training framework

to systematically exploit those
redundancies all together.

ADMM(Alternating Direction

Method of Multipliers) is able to

train neural networks with combinatorial
constrains with promising results.



What’s ADMM?

e An effective mathematical optimization, by decomposing an

original problem into two subproblems that can be solved
separately and efficiently

e Consider the optimization problem
min f(x) +g(x).
e The problem can be first re-written into

min f(x)+ g(z), subjectto x = z.
X.,Z



Weight Pruning

Redundancy source: weight

Fig. from [S. Han et al., NeuralPS 2015]:

Formulation of weight pruning:

before pruning after pruning The original pruning
N problem is not
ynapes ™ minimize f({Wi}, {bi}) +Z;g"(wi)’ differentiable, thus
. not applicable
peurons ~~* 0 ifcard(W;) <1, through
5:(Ws) = {+oo otherwise. backpropagation

ADMM formulation

N
minimize W, {b;}) + i(Z;),
mipimise J((Wih (b)) + ) 0i(2)

Augmented . , Solving 2 sub-
Lagrangian of subject o W; =Z;, i =1,..., N. problems
ADMM formulation iteratively

- Wit byt = in  L,({W},{b:}, {Z}},{U;
i=1

{Z;*'} == argmin L, ({W;*}, {bi*1},{Z:},{U}})
{z:}

N N
Pi 2 Pi 2
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ADMM: Iteratively solving two sub-problems

k41 pktly . : . . k k
{Wi ’bi } = {?;%}I;I{lg:} Lp({wl}’ {bl}a {Zz }’ {Uz }) SUb-PrOblem ( I )

{Zf-H} = arg min Lp({WéH'l}, {b?+1},{zi}, {Uf}) sub-problem (2)
{z:}

UMt = UF + Wi -z

o e s — pq, k k2
SGD to solve sub-problem(|) minimize  f({Wi}, {b:}) + ; 5 IWi = Z7 + Ui,
5 5 c kE+1 __ k+1 k
Euclidean projection to solve sub-problem(2) Z; =Hs,(W;" + 1),

Empirically, around 10-20 iterations, this
W - ZEH 2 <6, 25 - ZEE < i
condition is satisfied.

After the condition is satisfied, we use Euclidean projection (mapping) to guarantee

weights are truly sparse.
Then we apply masked retraining to retrain nonzero weights.



Structured pruning
Redundancy Source: Weight in a structured form

Filter-wise (X),...... Channel-wise (X). .. Shape-wise (X). j.¢.q
Pros: leverage GPUs, direct speed up , , | ,
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Tianyun Zhang*, Kaiqi Zhang*, Shaokai Ye*, Jiayu Li, Jian Tang, Wujie Wen, Xue Lin, Makan Fardad, Yanzhi Wang. “ADAM-ADMM:
A Unified Systematic Framework of Structured pruning for DNNs.”



Results on Structured Weight Pruning for CaffeNet

—

Structured pruning, with no accuracy loss

Method

Topl error  Statistcs convl conv2 conv3 conv4 convS conv2-5°
SSL [6] 42.53% column sparsity  0.0% 209% 39.7% 39.7% 24.6% 1.5x
our method 40.96% column sparsity  0.0% 209% 39.7% 39.7% 24.6% 1.5x
column sparsity  0.0% 70.0% 77.0% 85.0% 81.0%
our method 42.53% GPU1 x 1.00 227 335 364 104 48x
GPU2x 1.00 283 392 463 322

Structured pruning, within 2% accuracy loss

Method Topl error  Statistcs convl conv2 conv3 conv4 convS conv2-5°
o column sparsity  0.0% 63.2% 76.9% 84.7% 80.7%
SSL[6]  4466% [y sparsity 94% 129% 40.6% 46.9% 0.0% O+
column sparsity  0.0% 63.2% 76.9% 84.7% 80.7%
row sparsity 94% 129% 40.6% 46.9% 0.0%
our method 43.35% CPUXx 1.05 276 628 864 392 64x
GPUI1 x 1.00 1.25 410 149 1.19
GPU2x 1.00 229 652 594 325
column sparsity  0.0% 87.1% 90.0% 90.0% 88.1%
row sparsity 94% 129% 40.6% 46.9% 0.0%
our method 44.67% CPUx 1.05 7.75 1468 1355 6.02 13.2x
GPUI x 1.00 232 534 182 1.59
GPU2x 1.00 477 1255 797 4.0




ADMM-NN:An integrated Framework

e We develop an integrated
framework of ADMM regularization
and masked mapping & retraining
steps

o We guarantee solution feasibility
(satisfying all constraints) and
provide high quality (maintaining
test accuracy)

Masked

Mapping & |

. Retraining ;
Weight Pruned
& Quantized
Model

{zfﬂ ’

Euclidean projection: for
pruning

Masked retraining

quantization




Weight quantization + Weight Pruning
Redundancy Source: Weight and Weight representation

N N
minimize f({W}p, {b:}iL,) + D 9:(Za) + D> hi(Y0),
{Wi},{b:} i=1 i=1

subjectto W,;=7Z;, W; =Y, i=1,...,N.

-1.01|1.00 | 0.00 | 0.88

Implication:
* Highly desirable for FPGA
* Multiple ADMM regularizations

0.00(0.17 | 0.00 |-0.02
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Shaokai Ye*, Tianyun Zhang*, Kaiqi Zhang, Jiayu Li, Jiaming Xie, Yuan Liang, Sijia Liu, Xue Lin & YanzhiWang.“A Unified Framework of DNN
Weight Pruning and Weight/Clustering/Quantization Using ADMM.”



Results on Joint Weight Pruning and Quantization for
AlexNet

Model Accuracy No.of CONV FC Total data size/ Total model size
degra- weights weight weight Compress ratio (including index)/
dation bits bits Compress ratio

AlexNet Baseline 0.0% 60.9M 32 32 243.6MB 243.6MB

Iterative pruning (Han, 0.0% 6.7M 8 5 5.4MB /45 x 9.0MB /27 x

Mao, and Dally 2016)

Binary quant. (Leng et 3.0% 609M 1 1 7.3MB /32 x 7.3MB /32 x

al. 2017)

Ternary quant. (Leng 1.8% 60.9M 2 2 15.2MB / 16X 15.2MB / 16 x

et al. 2017)

Our Method (Clus- 0.1% 24T 5 3 1.16MB /210 2. 7TMB /90 x

tering)

Our Method (Quan- 0.2% 247 5 3 1.16MB /210 x 2. 7TMB / 90x

tization)




Shortcomings of ADMM

|. Sensitive to the choice of penalty parameter
2. Increasing length of training time when regularization target

is far away from the original weights, making it hard to

converge.

Our solution: Progressive ADMM



Direct ADMM
initial state after ADMM pruned

Progressive ADMM
initial state after ADMM pruned

Tianyun Zhang*, Shaokai Ye*, Kaiqi Zhang, Jian Tang, Wujie Wen, Makan Fardad, Yanzhi Wang.“A systematic DNN weight pruning
framework using alternating direction method of multipliers.”




Progressive ADMM makes pruning stable even pruning
rates are extra high

—&8—S. Hanet al. 2015 9— Our method Projected Gradient Descent

L1 regularization w/retrain —@—L2 regularization w/retrain
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Shaokai Ye*, Tianyun Zhang*, Kaiqi Zhang*, Xue Lin, Yanzhi Wang and et al. “Progressive weight pruning of Deep Neural Networks
using ADMM”



Progressive ADMM makes highest pruning rates ever

e Weight pruning ratio and accuracy on LeNet-5 (MNIST data set)

Method Accuracy  No. Para.  Rate

Uncompressed 99.2% 431K 1 x

Network Pruning (Han et al., 2015) 99.2% 36K 12.5% )
ADMM Pruning (Zhang et al., 2018b) 99.2% 6.05K 71.2x NEWversior
Optimal Brain Surgeon (Dong et al., 2017) 98.3% 3.88K [11x  achieves
Our Proposed Method 99.0% 2.58K 167x 243X

e Weight pruning ratio and accuracy on AlexNet (ImageNet dataset)

Method Top-5 Acc. No. Para.  Rate
Uncompressed 80.27% 61.0M 1 x
Network Pruning (Han et al., 2015) 80.3% 6.7M 9%
Optimal Brain Surgeon (Dong et al., 2017) 80.0% 6.7M 9.1x
Low Rank and Sparse Decomposition (Yu et al., 2017) 80.3% 6.1M 10 x
Fine-Grained Pruning (Mao et al., 2017) 80.4% 5.1IM 11.9%
NeST (Dai et al., 2017) 80.2% 3.9M 15.7x
Our Proposed Method (BVLC Model) 80.0% 2.0M 31 x
Our Proposed Method (CaffeNet Model) 80.0% 2.0M 31 %




Progressive ADMM makes highest pruning rates ever

e Weight pruning ratio and accuracy on VGGNet (ImageNet dataset)

Method Top-5 Acc. No. Para.  Rate
Uncompressed 88.7% 138M 1 x
Network Pruning (Han et al., 2015) 89.1% 10.6M 13 %
Optimal Brain Surgeon (Dong et al., 2017) 89.0% 10.3M 13.3%
Low Rank and Sparse Decomposition (Yu et al., 2017) 89.1% 9.2M 15 %
Our Proposed Method 88.7% 4.6M 30x
Our Proposed Method 88.2% 4.1M 34 x

e Weight pruning ratio and accuracy on ResNet-50 (ImageNet
dataset)

Method Acc. Loss No. Para. Rate
Uncompressed 0% 25.6M |
Fine-grained Pruning (Mao et al., 2017) 0% 9.8M 2.6
AMC (He et al., 2018) 0% 5.1IM SX
Our Method 0% 2.8M 9.2

Our Method 0.7% 1.47M 17.4x




Other results

e The gain is more significant for CONV layers
—Which are more computationally intensive than FC layers

—For example, we achieve 13.1x weight reduction in CONV layers
of AlexNet without accuracy degradation, whereas prior work is
only 2.7x

e Test accuracy even increases with moderate pruning rates
—-Using example of AlexNet (original accuracy 80.2%)

Pruning Rate  Our Proposed Method
18 % 80.9%
21 % 80.8%
30 % 80.2%




Binary Quantization

Scenario: performance degradation when
quantizing first and last layer.

More than |0 points accuracy drop is
observed by other methods(ResNet-18).

However, using progressive ADMM, only

around 6 points accuracy drop is observed.



Ongoing work
Co-training for both adversarial robustness

and model compression using ADMM(Results
in Lenet-5)

Table 1: Filter Pruning from robust pretrained model

Pruning Nat. Acc Adv. Acc
Rate
Ix 98.53% 94.52%
2% 98.65% 93.73%
3.25x 98.53% 03.34%
[ ] o
Contribution

Unlike prior work, state-of-art pruning and

robustness can be achieved at the same time.



