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Abstract

Weight pruning methods of deep neural networks (DNNs) have been demonstrated
to achieve a good model pruning ratio without loss of accuracy, thereby alleviating
the significant computation/storage requirements of large-scale DNNs. Structured
weight pruning methods have been proposed to overcome the limitation of irregular
network structure and demonstrated actual GPU acceleration. However, the pruning
ratio (degree of sparsity) and GPU acceleration are limited (to less than 50%) when
accuracy needs to be maintained.
In this work, we overcome pruning ratio and GPU acceleration limitations by
proposing a unified, systematic framework of structured weight pruning for
DNNs, named ADAM-ADMM (Adaptive Moment Estimation-Alternating Direc-
tion Method of Multipliers). It is a framework that can be used to induce different
types of structured sparsity, such as filter-wise, channel-wise, and shape-wise
sparsity, as well non-structured sparsity. The proposed framework incorporates
stochastic gradient descent with ADMM, and can be understood as a dynamic
regularization method in which the regularization target is analytically updated
in each iteration. A significant improvement in weight pruning ratio is achieved
without loss of accuracy, along with fast convergence rate. With a small sparsity de-
gree of 33% on the convolutional layers, we achieve 1.64% accuracy enhancement
for the AlexNet (CaffeNet) model. This is obtained by mitigation of overfitting.
Without loss of accuracy on the AlexNet model, we achieve 2.6× and 3.65×
average measured speedup on two GPUs, clearly outperforming the prior work.
The average speedups reach 2.77× and 7.5× when allowing a moderate accuracy
loss of 2%. In this case the model compression for convolutional layers is 13.2×,
corresponding to 10.5× CPU speedup. Our models and codes are released at
https://github.com/KaiqiZhang/ADAM-ADMM.

1 Introduction

Deep neural networks (DNNs) utilize multiple functional layers cascaded together to extract features
at multiple levels of abstraction [1, 2], and are thus both computationally and storage intensive.
As a result, many studies on DNN model compression are underway, including weight pruning
[3, 4, 5, 6, 7], low-rank approximation [8, 9, 10], low displacement rank approximation (structured
matrices) [11, 12, 13, 14], etc. Weight pruning can achieve a high model pruning ratio without loss of
accuracy. A pioneering work [3, 4] adopts an iterative weight pruning heuristic and results in a sparse
neural network structure. It can achieve 9× weight reduction with no accuracy loss on AlexNet
[1]. This weight pruning method has been extended by the same group [15] and other researchers
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[5, 7, 16, 17] to either use more sophisticated algorithms to achieve a higher weight pruning ratio, or
to obtain a fine-grained trade-off between a higher pruning ratio and a lower accuracy degradation.

Despite the promising results, these general weight pruning methods often produce non-structured
and irregular connectivity in DNNs. This leads to degradation in the degree of parallelism and actual
performance in GPU and hardware platforms. Moreover, the weight pruning ratio is mainly achieved
through compressing the fully-connected (FC) layers [3, 4, 16], which are less computationally
intensive compared with convolutional (CONV) layers and are becoming less important in state-of-
the-art DNNs such as ResNet [18]. To address these limitations, recent work [6, 19] have proposed
to learn structured sparsity, including sparsity at the levels of filters, channels, filter shapes, layer
depth, etc. These works focus on CONV layers and actual GPU speedup is reported as a result of
structured sparsity [6]. However, these structured weight pruning methods are based on regularization
techniques and are still quite heuristic [6, 19]. The weight pruning ratio and GPU acceleration are
both quite limited. For example, the average weight pruning ratio on CONV layers of AlexNet is
only 1.5× without any accuracy loss, corresponding to 33% sparsity.

In this work, we overcome this limitation by proposing a unified, systematic framework of struc-
tured weight pruning for DNNs, named ADAM-ADMM. It is a unified framework for different
types of structured sparsity such as filter-wise, channel-wise, and shape-wise sparsity, as well as
non-structured sparsity. It achieves a significant improvement in weight pruning ratio under the same
accuracy, along with fast convergence rate in sparsity training. The ADAM-ADMM framework
effectively incorporates stochastic gradient descent with the Alternating Direction Method of Multi-
pliers (ADMM), a powerful technique in optimization theory that has been shown to perform well
for non-convex optimization problems with combinatorial constraints [20, 21]. Through ADMM the
structured pruning problem is decomposed into two subproblems, where one is effectively solved
using stochastic gradient descent such as the Adam algorithm, while the other is solved analytically
for different types of structures. In the context of deep learning, the ADAM-ADMM framework can
be understood as a smart and dynamic regularization technique in which the regularization target is
analytically updated in each iteration.

We conduct extensive experiments using ImageNet data set on two GPUs (NVIDIA 1080Ti and
Jetson TX2), a CPU (Intel i7-6700K), and a Rasperry PI 3 embedded processor. With a small 33%
degree of sparsity on CONV layers, we achieve 1.64% enhancement in accuracy for the AlexNet
(CaffeNet) model. Without accurate loss on the AlexNet model, we achieve 2.6× and 3.65× average
measured speedup on two GPUs, which clearly outperforms the GPU acceleration of 49% reported in
SSL [6]. The speedups reach 2.77× and 7.5× when allowing a moderate accuracy loss of 2%. In this
case the model compression for CONV layers is 13.2×, corresponding to 10.5× CPU speedup. Our
ADAM-ADMM framework also achieves the highest pruning ratio in non-structured weight pruning.
Without accuracy loss, we achieve 16.1× pruning in CONV layers of AlexNet (CaffeNet), which
increases to 40.5× (conv2-conv5) when a moderate accuracy loss of 2% is allowed. Our models and
codes are released at https://github.com/KaiqiZhang/ADAM-ADMM.

2 Related work

General, non-structured weight pruning. The pioneering work by Han et al. [3, 4] achieved 9×
parameter reduction in AlexNet and 13× in VGG-16. However, most reduction is achieved in FC
layers, and the 2.7× reduction achieved in CONV layers will not lead to an overall acceleration
in GPU speed (indeed, it will cause a degradation in GPU speed if one exploits sparse matrix
multiplication [6].) Extensions of the iterative weight pruning framework of Han et al. [3, 4], such as
[16] (dynamic network surgery), [5] (NeST) and [15], use more delicate algorithms such as selective
weight growing and pruning. But the weight pruning ratios on CONV layers are still limited, e.g.,
3.1× in [16], 3.23× in [5], and 4.16× in [15] for AlexNet with no accuracy degradation. This level
of non-structured weight pruning cannot guarantee GPU acceleration. In fact, our ADAM-ADMM
framework can achieve 16.1× non-structured weight pruning in CONV layers of AlexNet without
accuracy degradation, however, still only minor GPU acceleration is actually observed.

Structured weight pruning. To overcome the limitation in non-structured, irregular weight pruning,
recent work on SSL [6] proposes to learn structured sparsity at the levels of filters, channels, filter
shapes, layer depth, etc. This work is one of the first with actually measured GPU accelerations. This
is because CONV layers after structured pruning will transform to a full matrix multiplication in
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GPU (with reduced matrix size). However, the weight pruning ratio and GPU acceleration are both
limited. The average weight pruning ratio on CONV layers of AlexNet is only 1.5× without accuracy
loss. The reported GPU acceleration is 49%, which will further reduce with the advance in GPU
technology (and higher degree of available parallelism). Besides, the recent work [19] achieves 2×
channel pruning with 1% accuracy degradation on VGGNet.

Other types of DNN model compression techniques. There are many other types of DNN model
compression techniques. Examples include low-rank approximation using single-value decomposition
(SVD) [8, 9, 10], and low-displacement rank approximation using structured matrices such as circulant
matrices [11, 14], Toeplitz matrices [12, 13], etc. These methods originally target FC layers only, but
recent work [14, 10] has generalized to CONV layers as well. These techniques result in a regular
network structure, but in general a lower pruning ratio and larger accuracy degradation compared
with parameter pruning. We point out that these compression techniques are compatible with ADMM
and will be the topic of future investigations orthogonal to this work.

3 The Unified ADAM-ADMM Framework for Structured Pruning

3.1 Problem formulation of structured pruning

Consider an N -layer DNN in which the first M layers are CONV layers and the rest are FC layers.
The weights and biases of the i-th layer are respectively denoted by Wi and bi, and the loss function
associated with the DNN is denoted by f

(
{Wi}Ni=1, {bi}Ni=1

)
; see [22]. In this paper, {Wi}Ni=1 and

{bi}Ni=1 respectively characterize the collection of weights and biases from layer 1 to layer N .

The process of training a DNN involves using stochastic gradient descent, mostly the Adam algorithm
[23], to minimize the loss function. In this paper, our objective is to implement structured pruning on
the DNN. In the following discussion we focus on the CONV layers because they have the highest
computation requirements, but the proposed framework is applicable to the FC layers as well. More
specifically, we minimize the loss function subject to specific structured sparsity constraints on the
weights in the CONV layers, i.e.,

minimize
{Wi},{bi}

f
(
{Wi}Ni=1, {bi}Ni=1

)
,

subject to Wi ∈ Si, i = 1, . . . ,M,
(1)

where Si is the set of Wi with a specific “structure". Our aim in this procedure is to strike a desirable
balance between weight pruning ratio and parallel computation. The details of different types of
structures will be discussed later in Section 4.

3.2 The proposed ADAM-ADMM framework

In problem (1) the constraint is non-convex and combinatorial. As a result, this problem cannot
be solved directly by stochastic gradient descent methods such as the Adam algorithm. However,
the property that Wi satisfies certain combinatorial “structures" allows us to integrate the ADMM
framework with stochastic gradient descent to effectively solve this problem.

To apply the ADMM framework, we (i) define indicator functions to incorporate combinatorial
constraints into the objective function, and (ii) define auxilliary variables that allow us to decompose
the optimization problem into two subproblems that individually can be solved effectively. In what
follows, we elaborate on these steps.

Corresponding to every set Si, i = 1, . . . ,M we define the indicator function

gi(Wi) =

{
0 if Wi ∈ Si,

+∞ otherwise.

Furthermore, we incorporate auxilliary variables Zi, i = 1, . . . ,M with the restriction that Zi = Wi.
The original problem (1) is then equivalent to

minimize
{Wi},{bi}

f
(
{Wi}Ni=1, {bi}Ni=1

)
+

M∑
i=1

gi(Zi),

subject to Wi = Zi, i = 1, . . . ,M.

(2)

3



Through formation of the augmented Lagrangian [20], the ADMM framework decomposes problem
(2) into two subproblems, and solves them iteratively until convergence1. The first subproblem is

minimize
{Wi},{bi}

f
(
{Wi}Ni=1, {bi}Ni=1

)
+

M∑
i=1

ρi
2
‖Wi − Zk

i + Uk
i ‖2F , (3)

where Uk
i := Uk−1

i + Wk
i − Zk

i . The first term in the objective function of (3) is the differentiable
loss function of the DNN, and the second term is a quadratic regularization term of the Wi’s, which
is differentiable and convex. As a result (3) can be solved by stochastic gradient descent. Although
we cannot guarantee the global optimality of the solution, it is due to the non-convexity of the DNN
loss function rather than the quadratic term enrolled by our method.

On the other hand, the second subproblem is given by

minimize
{Zi}

M∑
i=1

gi(Zi) +

M∑
i=1

ρi
2
‖Wk+1

i − Zi + Uk
i ‖2F . (4)

Note that gi(·) is the indicator function of Si, thus this subproblem can be solved analytically and
optimally [20]. For i = 1, . . . ,M , the optimal solution is

Zk+1
i = ΠSi(W

k+1
i + Uk

i ), (5)

where ΠSi
(·) is Euclidean projection of Wk+1

i +Uk
i onto Si. The set Si is different when we apply

different types of structured sparsity. We will discuss how to implement the Euclidean projection to
different types of structures in Section 4.

3.3 Explanation of ADAM-ADMM in the deep learning context

We name the proposed framework ADAM-ADMM because it is different from the conventional
utilization of ADMM, i.e., to accelerate the convergence of an originally convex problem [20,
21].Rather, we propose to integrate the ADMM framework with stochastic gradient descent, and
employ ADAM as a particular implementation of stochastic gradient descent. 2 Our experimental
results demonstrate the significantly higher performance of the proposed framework in weight pruning
and GPU acceleration.

Aside from mathematical proof in optimization theory, the advantage of the proposed ADAM-ADMM
framework can be explained in the deep learning context. Problem (3) can be understood as a smart,
dynamic L2 regularization method, in which the regularization target Zk

i −Uk
i will change judiciously

and analytically in each iteration. It will achieve higher performance in weight pruning or other
objective functions compared with the traditional regularization method in which the regularization
term is fixed.

4 Discussion and solutions of different types of structured sparsity

Figure 1: Illustration of filter-wise, channel-wise
and shape-wise structured sparsities from left to right.

Problem (1) employs the constraint set Si to rep-
resent the structure in the i-th CONV layer of
the DNN. In this section, we introduce constraint
sets corresponding to different types of structured
sparsity, and subsequently, the solution to corre-
sponding structured weight pruning problems in
the ADAM-ADMM framework. Non-structured,
irregular sparsity constraints (i.e., pruning) are also
included in the framework. The suitability for GPU
acceleration is discussed for different types of spar-
sity, and we finally introduce the proper combi-
nation of structured sparsities to facilitate GPU
accelerations.

1The details of ADMM are presented in [20, 22]. We omit the details due to space limitation.
2Our proposed framework can also employ other types of stochastic gradient descent. For example, the

training of CaffeNet [24] uses the momentum method to implement stochastic gradient descent, and we
demonstrate in this paper that this mehtod can be used in conjunction with ADMM.
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The collection of weights in the i-th CONV layer is a four-dimensional tensor, i.e., Wi ∈
RAi×Bi×Ci×Di , where Ai, Bi, Ci, and Di are respectively the number of filters, the number of
channels in a filter, the height of the filter, and the width of the filter, in layer i. In what follows, if X
denotes the weight tensor in a specific layer, let (X)a,:,:,: denote the a-th filter in X, (X):,b,:,: denote
the b-th channel, and (X):,b,c,d denote the collection of weights located at position (:, b, c, d) in every
filter of X, as illustrated in Figure 1.

4.1 Filter-wise structured sparsity

When we train a DNN with sparsity at the filter level, the constraint on the weights in the i-th CONV
layer is given by

Wi ∈ Si := {X | the number of nonzero filters in X is less than or equal to αi} .

Here, nonzero filter means that the filter contains some nonzero weight. To solve subproblem (5) with
such constraints, we first calculate Oa = ‖(Wk+1

i + Uk
i )a,:,:,:‖2F for a = 1, . . . , Ai, where ‖ · ‖F

denotes the Frobenius norm. We then keep αi elements in (Wk+1
i + Uk

i )a,:,:,: corresponding to the
αi largest values in {Oa}Ai

a=1 and set the rest to zero.

4.2 Channel-wise structured sparsity

When we train a DNN with sparsity at the channel level, the constraint on the weights in the i-th
CONV layer is given by

Wi ∈ Si := {X | the number of nonzero channels in X is less than or equal to βi} .

Here, we call the b-th channel nonzero if (X):,b,:,: contains some nonzero element. To solve subprob-
lem (5) with such constraints, we first calculate Ob = ‖(Wk+1

i +Uk
i ):,b,:,:‖2F for b = 1, . . . , Bi. We

then keep βi elements in (Wk+1
i + Uk

i ):,b,:,: corresponding to the βi largest values in {Ob}Bi

b=1 and
set the rest to zero.

4.3 Shape-wise structured sparsity

When we train a DNN with sparsity at the filter shape level, the constraint on the weights in the i-th
CONV layer is given by

Wi ∈ Si :=
{

X | the number of nonzero vectors in {X:,b,c,d}Bi,Ci,Di

b,c,d=1 is less than or equal to θi
}
.

To solve subproblem (5) with such constraints, we first calculateOb,c,d = ‖(Wk+1
i +Uk

i ):,b,c,d‖2F for
b = 1, . . . , Bi, c = 1, . . . , Ci and d = 1, . . . , Di. We then keep θi elements in (Wk+1

i + Uk
i ):,b,c,d

corresponding to the θi largest values in {Ob,c,d}Bi,Ci,Di

b,c,d=1 and set the rest to zero.

4.4 Non-Structured Weight sparsity

When we train a DNN with non-structured weight sparsity, the constraint on the weights in the i-th
CONV layer is

Wi ∈ Si := {X | the number of nonzero elements in X is less than or equal to γi} .

To solve subproblem (5), we keep γi elements in Wk+1
i + Uk

i with largest magnitudes and set the
rest to zero [22].

4.5 Summary and combination of structured sparsities to facilitate GPU acceleration

Convolutional computations in DNNs are commonly transformed to matrix multiplications by con-
verting weight tensors and feature map tensors to matrices [25], named general matrix multiplication
or GEMM. It is stated in [10] that the combination of filter-wise and filter shape-wise sparsities can
be employed to directly reduce the dimension of a weight matrix by removing its zero rows and
columns, thereby enabling GPU acceleration. This is illustrated in Figure 2. In the results we will use
row pruning and column pruning to represent the results of filter-wise and shape-wise sparsities.
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W0,0,0    W0,0,1    …    W0,0,k W0,1,0    W0,1,1    …    W0,1,k W0,m,0    W0,m,1    …    W0,m,k
. . .

W1,0,0    W1,0,1    …    W1,0,k W1,1,0    W1,1,1    …    W1,1,k W1,m,0    W1,m,1    …    W1,m,k
. . .

Wn,0,0    Wn,0,1    …    Wn,0,k Wn,1,0    Wn,1,1    …    Wn,1,k Wn,m,0    Wn,m,1    …    Wn,m,k
. . .

. . .

channel 0 channel 1 channel m

num of
filters

. . .

(filter width) x (filter height) x (num of input channels)
. . .
. . .

. . .

. . .

. . .

. . .

. . .

. . .

column-wise sparsity

row-wise sparsity

. . .

. . .

. . .

. . .

. . .

. . .
Figure 2: Illustration of 2D weight matrix for GEMM (left) and row-wise and column-wise sparsity (right)

Besides these two types of sparsities, channel sparsity allows for the pruning of entire channels,
and is suitable for emerging (systolic array-based) hardware implementations of DNNs that are
channel-based, including Google TPU [26]. Finally, it is worth mentioning that non-structured,
general sparsity rarely leads to GPU acceleration due to the irregular structure after pruning, but is
suitable for mobile and hardware implementations.

5 Experiment Results and Discussions

In this section, we evaluate the proposed ADAM-ADMM framework on the ImageNet ILSVRC-
2012 data set. Evaluation results on the MNIST data set are shown in Supplementary Materials.
Our experiments are based on the CaffeNet model (https://github.com/BVLC/caffe/tree/
master/models/bvlc_reference_caffenet) for a fair comparison with prior work SSL [6] on
structured pruning. CaffeNet is a replication of AlexNet [1] with minor changes, yielding a Top-1
accuracy of 57.4%. We initialize ADMM by using the pre-trained CaffeNet model, and we set the
penalty parameters ρ1 = · · · = ρN = 3 × 10−3 for filter-wise and shape-wise structured sparsity,
and ρ1 = · · · = ρN = 1.5× 10−3 for non-structured sparsity.

The ADAM-ADMM framework provides a fair comparison among different types of structured
sparsity and also non-structured sparsity. In the experiments we aim to answer two questions. First,
what will be the performance enhancement of the proposed ADAM-ADMM framework compared
with the prior work on weight pruning? Second, what are the pros and cons for different types
of structured sparsity and also non-structured sparsity? To answer the second question, we have
conducted extensive speedup testings on two GPU nodes, the high-performance NVIDIA GeForce
GTX 1080Ti and the low-power NVIDIA Jetson TX2 (targeting embedded applications), as well as
the Intel I7-6700K Quad-Core CPU and the Rasperry PI 3 embedded processor.

The training of sparse DNN models is performed in Caffe using NVIDIA 1080Ti and Tesla P100
GPUs. The comparisons on GEMM computation efficiency and acceleration are conducted in Caffe
[24]. The batch size is 1, which is typical for inference [3, 6, 10]. The baseline models and structured
sparse models execute using cuBLAS on GPU and Intel Math Kernel Library (MKL) on CPU. The
non-structured sparse models use cuSPARSE library on GPU.

5.1 Guidelines for Accuracy Enhancement: Refining and Balanced Pruning

We discuss two guidelines for accuracy retrieving and enhancement in the ADAM-ADMM framework.
The first is final refining/retraining. For a higher sparsity training speed, we may not wait for the full
convergence of ADMM. Rather, we remove the group of weights which are 0 or close to 0 after 9-12
ADMM iterations, and then we retrain the remaining non-zero weights to retrieve accuracy. We can
achieve an effective tradeoff between training speed and accuracy in this way.

We name the second guideline balanced pruning, where we simultaneously prune the CONV and FC
layers (rather than CONV layers only) in order to achieve a higher accuracy. We hypothesize that
overfitting can be effectively avoided through the balanced pruning of both CONV and FC layers. In
this way the overall accuracy can be improved by 0.3% to 0.4% for the ImageNet data set.

5.2 Comparison Results on Structured Sparsity

We compare our method with the two configurations of the SSL method [6] on AlexNet/CaffeNet. The
first has no accuracy degradation (Top-1 error 42.53%) and average sparsity of 33% on conv2-conv5.
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Table 1: Comparison of our method and SSL method on column sparsity without accuracy loss on CaffeNet
model using ImageNet ILSVRC-2012 data set

Method Top1 error Statistcs conv1 conv2 conv3 conv4 conv5 conv2-5§

SSL [6] 42.53% column sparsity 0.0% 20.9% 39.7% 39.7% 24.6% 1.5×
our method 40.96% column sparsity 0.0% 20.9% 39.7% 39.7% 24.6% 1.5×

our method 42.53%
column sparsity 0.0% 70.0% 77.0% 85.0% 81.0%

4.8×GPU1× 1.00 2.27 3.35 3.64 1.04
GPU2× 1.00 2.83 3.92 4.63 3.22

§ pruning ratio

We note that the 1st CONV layer of AlexNet/CaffeNet is very small with only 35K weights compared
with 2.3M in conv2-conv5, and is often not the optimization focus [6, 10]. The second has around 2%
accuracy degradation (Top-1 error 44.66%) with average sparsity of 81.7% on conv2-conv5.
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Figure 3: Top-1 accuracy vs. conv2-5 pruning ratio for
structured pruning methods (our method and SSL)

Table 1 shows the comparison of our method
with the first configuration of SSL. We pro-
vide two configurations from ADAM-ADMM,
the first with the same sparsity in each layer as
SSL, and the second with the same accuracy
as SSL (no accuracy degradation compared
with original model). With the same sparsity
degree, the overall accuracy reaches 59.04%,
which is 1.64% higher than the original Top-1
accuracy. This improvement is because over-
fitting can be mitigated through ADMM and
outperforms the improvement in [27]. With
the same accuracy, we can achieve a much
higher degree of sparsity of 79% on conv2-
conv5. This corresponds to 4.8× pruning,
which is significantly higher compared with
1.5× pruning in conv2-conv5 in [6].

We test the actual GPU accelerations using two GPUs: GPU1 is NVIDIA 1080Ti and GPU2 is
NVIDIA TX2. The acceleration ratio is computed with respect to the corresponding layer of the
original DNN executing on the same GPU and same setup. One can observe that the average
acceleration of conv2-conv5 on 1080Ti is 2.6×, while the average acceleration on TX2 is 3.65×.
These results clearly outperform the GPU acceleration of 49% reported in SSL [6] without accuracy
loss, as well as the recent work [10]. The acceleration ratio on TX2 is higher than 1080Ti because the
latter has a high parallelism degree, which will not be fully utilized when the matrix size GEMM of a
CONV layer is significantly reduced.

Table 2: Comparison of our method and SSL method on column and row sparsity with acceptable accuracy
loss on CaffeNet model using ImageNet ILSVRC-2012 dataset

Method Top1 error Statistcs conv1 conv2 conv3 conv4 conv5 conv2-5§

SSL [6] 44.66% column sparsity 0.0% 63.2% 76.9% 84.7% 80.7% 6.4×row sparsity 9.4% 12.9% 40.6% 46.9% 0.0%

our method 43.35%

column sparsity 0.0% 63.2% 76.9% 84.7% 80.7%

6.4×
row sparsity 9.4% 12.9% 40.6% 46.9% 0.0%
CPU× 1.05 2.76 6.28 8.64 3.92
GPU1× 1.00 1.25 4.10 1.49 1.19
GPU2× 1.00 2.29 6.52 5.94 3.25

our method 44.67%

column sparsity 0.0% 87.1% 90.0% 90.0% 88.1%

13.2×
row sparsity 9.4% 12.9% 40.6% 46.9% 0.0%
CPU× 1.05 7.75 14.68 13.55 6.02
GPU1× 1.00 2.32 5.34 1.82 1.59
GPU2× 1.00 4.77 12.55 7.97 4.70

§ pruning ratio
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Table 3: Comparison of our method and other methods on non-structured sparsity without accuracy loss on
AlexNet/CaffeNet model using ImageNet ILSVRC-2012

Method Top1 err. Statistcs conv1 conv2 conv3 conv4 conv5 conv1-5§ conv2-5§

weight prun. [3] 42.77% sparsity 16.0% 62.0% 65.0% 63.0% 63.0% 2.7× 2.7×
dyn. surgery [16] 43.09% sparsity 46.2% 59.4% 71.0% 67.7% 67.5% 3.1× 3.1×
NeST [5] 42.76% sparsity 51.1% 65.2% 81.5% 61.9% 59.3% 3.2× 3.3×
method [15] N/A sparsity 17.0% 74.0% 77.0% 77.0% 77.0% 4.2× 4.3×
l1 [6] 42.51% sparsity 14.7% 76.2% 85.3% 81.5% 76.3% 5.0× 5.9×
our method 41.33% sparsity 14.7% 76.2% 85.3% 81.5% 76.3% 5.0× 5.9×
our method 42.50% sparsity 0.0% 93.0% 94.3% 93.6% 93.5% 13.1× 16.1×
§ pruning ratio

Table 4: Comparison of our method and l1 regularization method on non-structured sparsity with acceptable
accuracy loss on CaffeNet model using ImageNet ILSVRC-2012 dataset

Method Top1 error Statistcs conv1 conv2 conv3 conv4 conv5 conv1-5§ conv2-5§

l1 [6] 44.67% sparsity 67.6% 92.4% 97.2% 96.6% 94.3% 21.8× 24.0×
our method 43.36% sparsity 67.6% 92.4% 97.2% 96.6% 94.3% 21.8× 24.0×
our method 44.62% sparsity 0.0% 97.0% 98.0% 97.5% 97.0% 25.5× 40.5×
§ pruning ratio

Table 2 shows the comparison with the second configuration of SSL. Again we provide two configu-
rations from ADAM-ADMM. With the same sparsity in each layer as SSL, we can again achieve
a higher accuracy. With the same accuracy (a moderate accuracy loss within 2% compared with
original DNN), a higher degree of 92.4% average sparsity of conv2-conv5 is achieved, translating
into 13.2× weight pruning. The actual GPU acceleration results are also high: 2.77× on 1080Ti and
7.5× on TX2. One can clearly see that the speedup on 1080Ti saturates because the high parallelism
degree cannot be fully exploited. And this trend will be more significant in more powerful GPUs.
The acceleration on CPU can be higher under this setup, reaching 10.5× on average on conv2-conv5.

We can clearly observe that the overall accuracy increases with a moderate pruning ratio in the
ADAM-ADMM framework. This is because ADAM-ADMM can effectively mitigate overfitting.
The overall accuracy vs. pruning ratio is demonstrated in Figure 3 in comparison with SSL results,
clearly demonstrating the advantage of the ADAM-ADMM framework.

5.3 Non-Structured Sparsity and Comparison Results on Different Platforms

The ADAM-ADMM framework is applicable to non-structured weight pruning as well. In this section
we demonstrate the non-structured weight pruning results (CONV layer pruning) achieved by the
ADAM-ADMM framework, as well as comparisons with reference work on non-structured pruning
[3, 5, 15, 16]. Without any accuracy loss compared with the original CaffeNet/AlexNet model, we
achieve 16.1× weight pruning in conv2-conv5, which are 6.0×, 5.2×, 4.9×, 3.75×, and 2.73×
compared with references [3], [16], [5], [15], and the l1 regularization method in [6], respectively.
In fact, our approach additionally achieves the highest accuracy among these methods. Within 2%
accuracy degradation, we achieve 40.5× weight pruning in conv2-conv5.

However, even such high degree of sparsity cannot lead to a good GPU acceleration. With 40.5×
weight pruning ratio in conv2-conv5, we can only achieve less than 2× speedup on NVIDIA TX2
and even speed reduction on 1080Ti (where the speed is calculated when both GPUs exploit sparse
matrix multiplication). This coincides with the conclusion in [6] that the high parallelism degree in
GPUs cannot be fully exploited in irregular sparsity patterns even if the state-of-the-art sparse matrix
multiplication package is utilized. However, such significant pruning results are clearly beneficial
for embedded processors, FPGA and ASIC designs due to the significantly shrunk model size and
computation requirement. For example, over 20× speedup can be observed when executing on
Rasperry PI 3 embedded processor thanks to the reduced computation and memory footprint.
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6 Conclusion

In this paper we proposed a unified, systematic framework of structured weight pruning for DNNs.
It is a unified framework for different types of structured sparsity such as filter-wise, channel-wise,
shape-wise sparsity as well for non-structured sparsity. In our experiments, we achieve 2.6× and
3.65× measured speedup on two GPUs without accuracy loss. The speedups reach 2.77× and 7.5×
on GPUs and 10.5× on CPU when allowing a moderate accuracy loss of 2%. Our pruning ratio and
speedup clearly outperform prior work.
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