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Abstract. Weight pruning methods for deep neural networks (DNNs)
have been investigated recently, but prior work in this area is mainly
heuristic, iterative pruning, thereby lacking guarantees on the weight re-
duction ratio and convergence time. To mitigate these limitations, we
present a systematic weight pruning framework of DNNs using the alter-
nating direction method of multipliers (ADMM). We first formulate the
weight pruning problem of DNNs as a nonconvex optimization problem
with combinatorial constraints specifying the sparsity requirements, and
then adopt the ADMM framework for systematic weight pruning. By us-
ing ADMM, the original nonconvex optimization problem is decomposed
into two subproblems that are solved iteratively. One of these subprob-
lems can be solved using stochastic gradient descent, the other can be
solved analytically. Besides, our method achieves a fast convergence rate.
The weight pruning results are very promising and consistently outper-
form the prior work. On the LeNet-5 model for the MNIST data set, we
achieve 71.2× weight reduction without accuracy loss. On the AlexNet
model for the ImageNet data set, we achieve 21× weight reduction with-
out accuracy loss. When we focus on the convolutional layer pruning for
computation reductions, we can reduce the total computation by five
times compared with the prior work (achieving a total of 13.4× weight
reduction in convolutional layers). Our models and codes are released at
https://github.com/KaiqiZhang/admm-pruning.

Keywords: systematic weight pruning, deep neural networks (DNNs),
alternating direction method of multipliers (ADMM)

1 Introduction

Large-scale deep neural networks or DNNs have made breakthroughs in many
fields, such as image recognition [1,2,3], speech recognition [4,5], game playing
[6], and driver-less cars [7]. Despite the huge success, their large model size and
computational requirements will add significant burden to state-of-the-art com-
puting systems [1,8,9], especially for embedded and IoT systems. As a result, a
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number of prior works are dedicated to model compression in order to simulta-
neously reduce the computation and model storage requirements of DNNs, with
minor effect on the overall accuracy. These model compression techniques in-
clude weight pruning [9,10,11,12,13,14,15,16], sparsity regularization [17,18,19],
weight clustering [9,20,21], and low rank approximation [22,23], etc.

A simple but effective weight pruning method has been proposed in [10],
which prunes the relatively less important weights and performs retraining for
maintaining accuracy in an iterative manner. It can achieve 9× weight reduc-
tion ratio on the AlexNet model with virtually no accuracy degradation. This
method has been extended and generalized in multiple directions, including en-
ergy efficiency-aware pruning [12], structure-preserved pruning using regulariza-
tion methods [17], and employing more powerful (and time-consuming) heuristics
such as evolutionary algorithms [11]. While existing pruning methods achieve
good model compression ratios, they are heuristic (and therefore cannot achieve
optimal compression ratio), lack theoretical guarantees on compression perfor-
mance, and require time-consuming iterative retraining processes.

To mitigate these shortcomings, we present a systematic framework of weight
pruning and model compression, by (i) formulating the weight pruning prob-
lem as a constrained nonconvex optimization problem with combinatorial con-
straints, which employs the cardinality function to induce sparsity of the weights,
and (ii) adopting the alternating direction method of multipliers (ADMM) [24]
for systematically solving this optimization problem. By using ADMM, the orig-
inal nonconvex optimization problem is decomposed into two subproblems that
are solved iteratively. In the weight pruning problem, one of these subproblems
can be solved using stochastic gradient descent, and the other can be solved an-
alytically. Upon convergence of ADMM, we remove the weights which are (close
to) zero and retrain the network.

Our extensive numerical experiments indicate that ADMM works very well
in weight pruning. The weight pruning results consistently outperform the prior
work. On the LeNet-5 model for the MNIST data set, we achieve 71.2× weight
reduction without accuracy loss, which is 5.9 times compared with [10]. On the
AlexNet model for the ImageNet data set, we achieve 21× weight reduction
without accuracy loss, which is 2.3 times compared with [10]. Moreover, when
we focus on the convolutional layer pruning for computation reductions, we
can reduce the total computation by five times compared with the prior work
(achieving a total of 13.4× weight reduction in convolutional layers). Our models
and codes are released at https://github.com/KaiqiZhang/admm-pruning.

2 Related Work on Weight Reduction/Model
Compression

Mathematical investigations have demonstrated a significant margin for weight
reduction in DNNs due to the redundancy across filters and channels, and a
number of prior works leverage this property to reduce weight storage. The tech-
niques can be classified into two categories: 1) Low rank approximation methods

https://github.com/KaiqiZhang/admm-pruning
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[22,23] such as Singular Value Decomposition (SVD), which are typically diffi-
cult to achieve zero accuracy degradation with compression, especially for very
large DNNs; 2) Weight pruning methods which aim to remove the redundant
or less important weights, thereby achieving model compression with negligible
accuracy loss.

A prior work [10] serves as a pioneering work for weight pruning. It uses a
heuristic method of iteratively pruning the unimportant weights (weights with
small magnitudes) and retraining the DNN. It can achieve a good weight re-
duction ratio, e.g., 9× for AlexNet, with virtually zero accuracy degradation,
and can be combined with other model compression techniques such as weight
clustering [9,20]. It has been extended in several works. For instance, the energy
efficiency-aware pruning method [12] has been proposed to facilitate energy-
efficient hardware implementations, allowing for certain accuracy degradation.
The structured sparsity learning technique has been proposed to partially over-
come the limitation in [10] of irregular network structure after pruning. However,
neither technique can outperform the original method [10] in terms of compres-
sion ratio under the same accuracy. There is recent work [11] that employs an
evolutionary algorithm for weight pruning, which incorporates randomness in
both pruning and growing of weights, following certain probabilistic rules. De-
spite the higher compression ratio it achieves, it suffers from a prohibitively long
retraining phase. For example, it needs to start with an already-compressed
model for further pruning on the ImageNet data set, instead of the original
AlexNet or VGG models.

In summary, the prior weight pruning methods are highly heuristic and suf-
fer from a long retraining phase. On the other hand, our proposed method is a
systematic framework, achieves higher compression ratio, exhibits faster conver-
gence rate, and is also general for structured pruning and weight clustering.

3 Background of ADMM

ADMM was first introduced in the 1970s, and theoretical results in the following
decades have been collected in [24]. It is a powerful method for solving regularized
convex optimization problems, especially for problems in applied statistics and
machine learning. Moreover, recent works [25,26] demonstrate that ADMM is
also a good tool for solving nonconvex problems, potentially with combinatorial
constraints, since it can converge to a solution that may not be globally optimal
but is sufficiently good for many applications.

For some problems which are difficult to solve directly, we can use variable
splitting first, and then employ ADMM to decompose the problem into two
subproblems that can be solved separately and efficiently. For example, the op-
timization problem

minimize
x

f(x) + g(x), (1)

assumes that f(·) is differentiable and g(·) is non-differentiable but has ex-
ploitable structure properties. Common instances of g are the `1 norm and the
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indicator function of a constraint set. To make it suitable for the application of
ADMM, we use variable splitting to rewrite the problem as

minimize
x, z

f(x) + g(z),

subject to x = z.

Next, via the introduction of the augmented Lagrangian, the above optimization
problem can be decomposed into two subproblems in x and z [24]. The first
subproblem is minimize

x
f(x) + q1(x), where q1(·) is a quadratic function of its

argument. Since f and q1 are differentiable, the first subproblem can be solved
by gradient descent. The second subproblem is minimize

z
g(z)+q2(z), where q2(·)

is a quadratic function of its argument. In problems where g has some special
structure, for instance if it is a regularizer in (1), exploiting the properties of
g may allow this problem to be solved analytically. More details regarding the
application of ADMM to the weight pruning problem will be demonstrated in
Section 4.2.

4 Problem Formulation and Proposed Framework

4.1 Problem Formulation of Weight Pruning

Consider an N -layer DNN, where the collection of weights in the i-th (convolu-
tional or fully-connected) layer is denoted by Wi and the collection of biases in
the i-th layer is denoted by bi. In a convolutional layer the weights are organized
in a four-dimensional tensor and in a fully-connected layer they are organized in
a two-dimensional matrix [26].

Assume that the input to the (fully-connected) DNN is x. Every column of
x corresponds to a training image, and the number t of columns determines the
number of training images in the input batch. The input x will enter the first
layer and the output of the first layer is calculated by

h1 = σ(W1x + b1),

where h1 and b1 have t columns, and b1 is a matrix with identical columns.
The non-linear activation function σ(·) acts entry-wise on its argument, and is
typically chosen to be the ReLU function [27] in state-of-the-art DNNs. Since
the output of one layer is the input of the next, the output of the i-th layer for
i = 2, . . . , N − 1 is given by

hi = σ(Wihi−1 + bi).

The output of the DNN corresponding to a batch of images is

s = WNhN−1 + bN .

In this case s is a k × t matrix, where k is the number of classes in the
classification, and t is the number of training images in the batch. The element
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sij in matrix s is the score of the j-th training image corresponding to the i-th
class. The total loss of the DNN is calculated as

f
(
{W1, . . . ,WN}, {b1, . . . ,bN}

)
= −1

t

t∑
j=1

log
esyjj∑k
i=1 e

sij
+ λ

N∑
i=1

‖Wi‖2F ,

where ‖ · ‖2F denotes the Frobenius norm, the first term is cross-entropy loss,
yj is the correct class of the j-th image, and the second term is L2 weight
regularization.

Hereafter, for simplicity of notation we write {Wi}Ni=1, or simply {Wi},
instead of {W1, . . . ,WN}. The same notational convention applies to writing
{bi} instead of {b1, . . . ,bN}. The training of a DNN is a process of minimizing
the loss by updating weights and biases. If we use the gradient descent method,
the update at every step is

Wi = Wi − α
∂f
(
{Wi}, {bi}

)
∂Wi

,

bi = bi − α
∂f
(
{Wi}, {bi}

)
∂bi

,

for i = 1, . . . , N, where α is the learning rate.
Our objective is to prune the weights of the DNN, and therefore we minimize

the loss function subject to constraints on the cardinality of weights in each layer.
More specifically, our training process solves

minimize
{Wi},{bi}

f
(
{Wi}, {bi}

)
,

subject to card(Wi) ≤ li, i = 1, . . . , N,

where card(·) returns the number of nonzero elements of its matrix argument
and li is the desired number of weights in the i-th layer of the DNN1. A prior
work [28] uses ADMM for DNN training with regularization in the objective
function, which can result in sparsity as well. On the other hand, our method
directly targets at sparsity with incorporating hard constraints on the weights,
thereby resulting in a higher degree of sparsity.

4.2 Systematic Weight Pruning Framework using ADMM

We can rewrite the above weight pruning optimization problem as

minimize
{Wi},{bi}

f
(
{Wi}, {bi}

)
,

subject to Wi ∈ Si, i = 1, . . . , N,

1 Our framework is also compatible with the constraint of l total number of weights
for the whole DNN.
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where Si = {Wi | card(Wi) ≤ li}, i = 1, . . . , N . It is clear that S1, . . . ,SN
are nonconvex sets, and it is in general difficult to solve optimization problems
with nonconvex constraints. The problem can be equivalently rewritten in a form
without constraint, which is

minimize
{Wi},{bi}

f
(
{Wi}, {bi}

)
+

N∑
i=1

gi(Wi), (2)

where gi(·) is the indicator function of Si, i.e.,

gi(Wi) =

{
0 if card(Wi) ≤ li,
+∞ otherwise.

The first term of problem (2) is the loss function of a DNN, while the second term
is non-differentiable. This problem cannot be solved analytically or by stochastic
gradient descent. A recent paper [24], however, demonstrates that such problems
lend themselves well to the application of ADMM, via a special decomposition
into simpler subproblems. We begin by equivalently rewriting the above problem
in ADMM form as

minimize
{Wi},{bi}

f
(
{Wi}, {bi}

)
+

N∑
i=1

gi(Zi),

subject to Wi = Zi, i = 1, . . . , N.

The augmented Lagrangian [24] of the above optimization problem is given by

Lρ
(
{Wi}, {bi}, {Zi}, {Λi}

)
= f

(
{Wi}, {bi}

)
+

N∑
i=1

gi(Zi)

+

N∑
i=1

tr[ΛT
i (Wi − Zi)] +

N∑
i=1

ρi
2
‖Wi − Zi‖2F ,

where Λi has the same dimension as Wi and is the Lagrange multiplier (also
known as the dual variable) corresponding to the constraint Wi = Zi, the posi-
tive scalars {ρ1, . . . , ρN} are penalty parameters, tr(·) denotes the trace, and ‖·‖2F
denotes the Frobenius norm. Defining the scaled dual variable Ui = (1/ρi)Λi,
the augmented Lagrangian can be equivalently expressed as

Lρ
(
{Wi}, {bi}, {Zi}, {Λi}

)
= f

(
{Wi}, {bi}

)
+

N∑
i=1

gi(Zi)

+

N∑
i=1

ρi
2
‖Wi − Zi + Ui‖2F −

N∑
i=1

ρi
2
‖Ui‖2F .
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The ADMM algorithm proceeds by repeating, for k = 0, 1, . . . , the following
steps [24,29]:

{Wk+1
i ,bk+1

i } := arg min
{Wi},{bi}

Lρ
(
{Wi}, {bi}, {Zki }, {Uk

i }
)

(3)

{Zk+1
i } := arg min

{Zi}
Lρ
(
{Wk+1

i }, {bk+1
i }, {Zi}, {Uk

i }
)

(4)

Uk+1
i := Uk

i + Wk+1
i − Zk+1

i , (5)

until both of the following conditions are satisfied

‖Wk+1
i − Zk+1

i ‖2F ≤ εi, ‖Zk+1
i − Zki ‖2F ≤ εi. (6)

In order to solve the overall pruning problem, we need to solve subproblems
(3) and (4). More specifically, problem (3) can be formulated as

minimize
{Wi},{bi}

f
(
{Wi}, {bi}

)
+

N∑
i=1

ρi
2
‖Wi − Zki + Uk

i ‖2F , (7)

where the first term is the loss function of the DNN, and the second term can
be considered as a special L2 regularizer. Since the regularizer is a differentiable
quadratic norm, and the loss function of the DNN is differentiable, problem (7)
can be solved by stochastic gradient descent. More specifically, the gradients of
the augmented Lagrangian with respect to Wi and bi are given by

∂Lρ
(
{Wi}, {bi}, {Zki }, {Uk

i }
)

∂Wi
=
∂f
(
{Wi}, {bi}

)
∂Wi

+ ρi(Wi − Zki + Uk
i ),

∂Lρ
(
{Wi}, {bi}, {Zki }, {Uk

i }
)

∂bi
=
∂f
(
{Wi}, {bi}

)
∂bi

.

Note that we cannot prove optimality of the solution to subproblem (3), just as
we can not prove optimality of the solution to the original DNN training problem
due to the nonconvexity of the loss function of DNN.

On the other hand, problem (4) can be formulated as

minimize
{Zi}

N∑
i=1

gi(Zi) +

N∑
i=1

ρi
2
‖Wk+1

i − Zi + Uk
i ‖2F .

Since gi(·) is the indicator function of the set Si, the globally optimal solution
of this problem can be explicitly derived as [24]:

Zk+1
i = ΠSi(W

k+1
i + Uk

i ), (8)

where ΠSi(·) denotes the Euclidean projection onto the set Si. Note that Si is a
nonconvex set, and computing the projection onto a nonconvex set is a difficult
problem in general. However, the special structure of Si = {W | card(W) ≤ li}
allows us to express this Euclidean projection analytically. Namely, the solution
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of (4) is to keep the li elements of Wk+1
i + Uk

i with the largest magnitudes and
set the rest to zero [24]. Finally, we update the dual variable Ui according to
(5). This concludes one iteration of the ADMM algorithm.

We observe that the proposed systematic framework exhibits multiple major
advantages in comparison with the heuristic weight pruning method in [10]. Our
proposed method achieves a higher compression ratio with a higher convergence
rate compared with the iterative pruning and retraining method in [10]. For
example, we achieve 15× compression ratio on AlexNet with only 10 iterations
of ADMM. Additionally, subproblem (3) can be solved in a fraction of the number
of iterations needed for training the original network when we use warm start
initialization, i.e., when we initialize subproblem (3) with {Wk

i ,b
k
i } in order to

find {Wk+1
i ,bk+1

i }. For example, when training on the AlexNet model using
the ImageNet data set, convergence is achieved in approximately 1

10 of the total
iterations required for the original DNN training. Also, problems (4) and (5) are
straightforward to carry out, thus their computational time can be ignored. As
a synergy of the above effects, the total computational time of 10 iterations of
ADMM will be similar to (or at least in the same order of) the training time of
the original DNN. Furthermore, we achieve 21× compression ratio on AlexNet
without accuracy loss when we use 40 iterations of ADMM.

4.3 The Final Retraining Step

For very small values of εi in (6), ADMM needs a large number of iterations
to converge. However, in many applications, such as the weight pruning prob-
lem considered here, a slight increase in the value of εi can result in a signifi-
cant speedup in convergence. On the other hand, when ADMM stops early, the
weights to be pruned may not be identically zero, in the sense that there will
be small nonzero elements contained in Wi. To deal with this issue, we keep
the li elements with the largest magnitude in Wi, set the rest to zero and no
longer involve these elements in training (i.e., we prune these weights). Then,
we retrain the DNN. Note that we only need a single retraining step and the
convergence is much faster than training the original DNN, since the starting
point of the retraining is already close to the point which can achieve the original
test/validation accuracy.

4.4 Overall Illustration of Our Proposed Framework

We take the weight distribution of every (convolutional or fully connected) layer
on LeNet-5 as an example to illustrate our systematic weight pruning method.
The weight distributions at different stages are shown in Figure 1. The subfigures
in the left column show the weight distributions of the pretrained model, which
serves as our starting point. The subfigures in the middle column show that
after the convergence of ADMM for moderate values of εi, we observe a clear
separation between weights whose values are close to zero and the remaining
weights. To prune the weights rigorously, we set the values of the close-to-zero
weights exactly to zero and retrain the DNN without updating these values.
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The subfigures in the right column show the weight distributions after our final
retraining step. We observe that most of the weights are zero in every layer. This
concludes our weight pruning procedure.

Conv1

Conv2

Fc1

Fc2

Pretrained model

ADMM Retrain

Model after ADMM Model after retrain

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Weight distribution of every (convolutional or fully connected) layer on LeNet-
5. The subfigures in the left column are the weight distributions of the pretrained
DNN model (serving as our starting point); the subfigures of the middle column are
the weight distributions after the ADMM procedure; the subfigures of the right column
are the weight distributions after our final retraining step. Note that the subfigures in
the last column include a small number of nonzero weights that are not clearly visible
due to the large number of zero weights.

5 Experimental Results

We have tested the proposed systematic weight pruning framework on the MNIST
benchmark using the LeNet-300-100 and LeNet-5 models [2] and the ImageNet
ILSVRC-2012 benchmark on the AlexNet model [1], in order to perform an
apple-to-apple comparison with the prior heuristic pruning work [10]. The LeNet
models are implemented and trained in TensorFlow [30] and the AlexNet models
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Table 1. Weight pruning results on LeNet-300-100 network

Layer Weights Weights after prune Weights after prune % Result of [10] %

fc1 235.2K 9.41K 4% 8%
fc2 30K 2.1K 7% 9%
fc3 1K 0.12K 12% 26%

Total 266.2K 11.6K 4.37% 8%

Table 2. Weight pruning results on LeNet-5 network

Layer Weights Weights after prune Weights after prune % Result of [10] %

conv1 0.5K 0.1K 20% 66%
conv2 25K 2K 8% 12%
fc1 400K 3.6K 0.9% 8%
fc2 5K 0.35K 7% 19%

Total 430.5K 6.05K 1.4% 8%

are trained in Caffe [31]. We carry out our experiments on NVIDIA Tesla P100
GPUs. The weight pruning results consistently outperform the prior work. On
the LeNet-5 model, we achieve 71.2× weight reduction without accuracy loss,
which is 5.9 times compared with [10]. On the AlexNet model, we achieve 21×
weight reduction without accuracy loss, which is 2.3 times compared with [10].
Moreover, when we focus on the convolutional layer pruning for computation
reductions, we can reduce the total computation by five times compared with
the prior work [10].

5.1 Testing results on LeNet models on MNIST data set

Table 1 shows our per-layer pruning results on the LeNet-300-100 model. LeNet-
300-100 is a fully connected network with 300 and 100 neurons on the two hidden
layers, respectively, and achieves 98.4% test accuracy on the MNIST benchmark.
Table 2 shows our per-layer pruning results on the LeNet-5 model. LeNet-5
contains two convolutional layers, two pooling layers and two fully connected
layers, and can achieve 99.2% test accuracy on the MNIST benchmark.

Our pruning framework does not incur accuracy loss and can achieve a much
higher compression ratio on these networks compared with the prior iterative
pruning heuristic [10], which reduces the number of parameters by 12× on both
LeNet-300-100 and LeNet-5. On the LeNet-300-100 model, our pruning method
reduces the number of weights by 22.9×, which is 90% higher than [10]. Also,
our pruning method reduces the number of weights by 71.2× on the LeNet-5
model, which is 5.9 times compared with [10].

5.2 Testing results on AlexNet model using ImageNet benchmark

We implement our systematic weight pruning method using the BAIR/BVLC
AlexNet model2 on the ImageNet ILSVRC-2012 benchmark. The implemen-

2 https://github.com/BVLC/caffe/tree/master/models/bvlc_alexnet

https://github.com/BVLC/caffe/tree/master/models/bvlc_alexnet
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tation is on the Caffe tool because it is faster than TensorFlow. The original
BAIR/BVLC AlexNet model can achieve a top-5 accuracy 80.2% on the val-
idation set. AlexNet contains 5 convolutional (and pooling) layers and 3 fully
connected layers with a total of 60.9M parameters, with the detailed network
structure shown in deploy.prototxt text on the website indicated in footnote 2.

Our first set of experiments only target model size reductions for AlexNet,
and the results are shown in Table 3. It can be observed that our pruning method
can reduce the number of weights by 21× on AlexNet, which is more than twice
compared with the prior iterative pruning heuristic. We achieve a top-5 accuracy
of 80.2% on the validation set of ImageNet ILSVRC-2012. Layer-wise comparison
results are also shown in Table 3, while comparisons with some other model
compression methods are shown in Table 5. These results clearly demonstrate the
advantage of the proposed systematic weight pruning framework using ADMM.

Table 3. Weight pruning results on AlexNet network (purely focusing on weight re-
ductions) without accuracy loss

Layer Weights Weights after prune Weights after prune% Result of [10]

conv1 34.8K 28.19K 81% 84%
conv2 307.2K 61.44K 20% 38%
conv3 884.7K 168.09K 19% 35%
conv4 663.5K 132.7K 20% 37%
conv5 442.4K 88.48K 20% 37%
fc1 37.7M 1.06M 2.8% 9%
fc2 16.8M 0.99M 5.9% 9%
fc3 4.1M 0.38M 9.3% 25%

Total 60.9M 2.9M 4.76% 11%

Our second set of experiments target computation reduction besides weight
reduction. Because the major computation in state-of-the-art DNNs is in the
convolutional layers, we mainly target weight pruning in these layers. Although
on AlexNet, the number of weights in convolutional layers is less than that
in fully connected layers, the computation on AlexNet is dominated by its 5
convolutional layers. In our experiments, we conduct experiments which keep
the same portion of weights as [10] in fully connected layers but prune more
weights in convolutional layers. For AlexNet, Table 4 shows that we can reduce
the number of weights by 13.4× in convolutional layers, which is five times
compared with 2.7× in [10]. This indicates our pruning method can reduce much
more computation compared with the prior work [10]. Layer-wise comparison
results are also shown in Table 4. Still, it is difficult to prune weights in the first
convolutional layer because they are needed to directly extract features from
the raw inputs. Our major gain is because (i) we can achieve significant weight
reduction in conv2 through conv5 layers, and (ii) the first convolutional layer is
relatively small and less computational intensive.
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Table 4. Weight pruning results on AlexNet network (focusing on computation reduc-
tions) without accuracy loss

Layer Weights Weights after prune Weights after prune% Result of [10]

conv1 34.8K 21.92K 63% 84%
conv2 307.2K 21.5K 7% 38%
conv3 884.7K 53.08K 6% 35%
conv4 663.5K 46.45K 7% 37%
conv5 442.4K 30.97K 7% 37%
fc1 37.7M 3.39M 9% 9%
fc2 16.8M 1.51M 9% 9%
fc3 4.1M 1.03M 25% 25%

Total of conv1-5 2332.6K 173.92k 7.46% 37.1%

Several extensions [12,17] of the original weight pruning work have improved
in various directions such as energy efficiency for hardware implementation and
regularity, but they cannot strictly outperform the original work [10] in terms of
compression ratio under the same accuracy. The very recent work [11] employs
an evolutionary algorithm for weight pruning, which incorporates randomness
in both pruning and growing of weights following certain probability rules. It
can achieve a comparable model size with our work. However, it suffers from
a prohibitively long retraining phase. For example, it needs to start with an
already-compressed model with 8.4M parameters for further pruning on Ima-
geNet, instead of the original AlexNet model. By using an already-compressed
model, it can reduce the number of neurons per layer as well, while such reduc-
tion is not considered in our proposed framework.

Table 5. Weight reduction ratio comparisons using different model compression tech-
niques on the AlexNet model

Network Top-5 Error Parameters Weight Reduction Ratio

Baseline AlexNet [1] 19.8% 60.9M 1.0×
SVD [23] 20.6% 11.9M 5.1×
Layer-wise pruning [32] 20.0% 6.7M 9.1×
Network pruning [10] 19.7% 6.7M 9.1×
Our result (10 iterations
of ADMM)

19.8% 4.06M 15×

NeST [11] 19.7% 3.9M 15.7×
Dynamic surgery [14] 20.0% 3.45M 17.7×
Our result (25 iterations
of ADMM)

19.8% 3.24M 18.8×

Our result (40 iterations
of ADMM)

19.8% 2.9M 21×
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6 Discussion

6.1 Parameters and initialization of ADMM

For nonconvex problems in general, there is no guarantee that ADMM will con-
verge to an optimal point. ADMM can converge to different points for different
choices of initial values {Z0

1, . . . ,Z
0
N} and {U0

1, . . . ,U
0
N} and penalty parame-

ters {ρ1, . . . , ρN} [24]. To resolve this limitation, we set the pretrained model
{Wp

i ,b
p
i }, a good solution of minimize

{Wi},{bi}
f
(
{Wi}, {bi}

)
, to be the starting point

when we use stochastic gradient descent to solve problem (7). We initialize Z0
i

by keeping the li elements of Wp
i with the largest magnitude and set the rest

to be zero. We set U0
1 = · · · = U0

N = 0. For problem (7), if the penalty param-
eters {ρ1, . . . , ρN} are too small, the solution will be close to the minimum of
f(·) but fail to regularize the weights, and the ADMM procedure may converge
slowly or not converge at all. If the penalty parameters are too large, the solu-
tion may regularize the weights well but fail to minimize f(·), and therefore the
accuracy of the DNN will be degradated. In actual experiments, we find that
ρ1 = · · · = ρN = 10−4 is an appropriate choice for LeNet-5 and LeNet-300-100,
and that ρ1 = · · · = ρN = 1.5× 10−3 works well for AlexNet.

6.2 Parameters of the desired number of weights in each layer

We initialize li based on existing results in the literature, then we implement
our weight pruning method on the DNN and test its accuracy. If there is no
accuracy loss on the DNN, we decrease li in every layer proportionally. We use
binary search to find the smallest li that will not result in accuracy loss.

6.3 Convergence behavior of ADMM and loss value progression on
AlexNet

Convergence behavior of ADMM (5 CONV layers in AlexNet) is shown in Figure
2 (left sub-figure). The loss value progression of AlexNet is shown in Figure 2
(right sub-figure). We start from an existing DNN model without pruning. After
the convergence of ADMM, we remove the weights which are (close to) zero,
which results in an increase in the loss value. We then retrain the DNN and the
loss decreases to the same level as it was before pruning.

6.4 Discussion on our proposed framework

The cardinality function is nonconvex and nondifferentiable, which complicates
the use of standard gradient algorithms. ADMM circumvents the issue of differ-
entiability systematically, and does so without introducing additional numerical
complexity. Furthermore, although ADMM achieves global optimality for con-
vex problems, it has been shown in the optimization literature that it performs
extremely well for large classes of nonconvex problems. In fact, ADMM-based
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Fig. 2. Convergence behavior of ADMM and loss value progression of AlexNet
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pruning can be perceived as a smart regularization technique in which the reg-
ularization target will be dynamically updated in each iteration. The limitation
is that we need to tune the parameters li. However, some parameter tuning is
generally inevitable; even a soft regularization parameter requires fine-tuning in
order to achieve the desired solution structure. On the positive side, the freedom
in setting li allows the user to obtain the exact desired level of sparsity.

7 Conclusions and Future Work

In this paper, we presented a systematic DNN weight pruning framework using
ADMM. We formulate the weight pruning problem of DNNs as a nonconvex opti-
mization problem with combinatorial constraints specifying the sparsity require-
ments. By using ADMM, the nonconvex optimization problem is decomposed
into two subproblems that are solved iteratively, one using stochastic gradient
descent and the other analytically. We reduced the number of weights by 22.9×
on LeNet-300-100 and 71.2× on LeNet-5 without accuracy loss. For AlexNet, we
reduced the number of weights by 21× without accuracy loss. When we focued
on computation reduction, we reduced the number of weights in convolutional
layers by 13.4× on AlexNet, which is five times compared with the prior work.

In future work, we will extend the proposed weight pruning method to incor-
porate structure and regularity in the weight pruning procedure, and develop a
unified framework of weight pruning, activation reduction, and weight clustering.
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28. Kiaee, F., Gagné, C., Abbasi, M.: Alternating direction method of multipliers for
sparse convolutional neural networks. arXiv preprint arXiv:1611.01590 (2016)

29. Liu, S., Fardad, M., Masazade, E., Varshney, P.K.: On optimal periodic sensor
scheduling for field estimation in wireless sensor networks. In: Global Conference
on Signal and Information Processing (GlobalSIP), IEEE (2013) 137–140

30. Abadi, M., Agarwal, A., Barham, P., et al.: Tensorflow: Large-scale machine learn-
ing on heterogeneous distributed systems. arXiv preprint arXiv:1603.04467 (2016)

31. Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., Guadar-
rama, S., Darrell, T.: Caffe: Convolutional architecture for fast feature embedding.
In: Proceedings of the 22nd ACM international conference on Multimedia, ACM
(2014) 675–678

32. Dong, X., Chen, S., Pan, S.: Learning to prune deep neural networks via layer-wise
optimal brain surgeon. In: Advances in Neural Information Processing Systems.
(2017) 4860–4874


	A Systematic DNN Weight Pruning Framework using Alternating Direction Method of Multipliers

