
ADMM-NN: An Algorithm-Hardware Co-Design Framework of
DNNs Using Alternating Direction Method of Multipliers

Ao Ren
1∗
, Tianyun Zhang

2∗
, Shaokai Ye

2
, Jiayu Li

2
, Wenyao Xu

3
, Xuehai Qian

4
, Xue Lin

1
, Yanzhi Wang

1

∗ Ao Ren and Tianyun Zhang Contributed equally to this work
1 Department of Electrical and Computer Engineering, Northeastern University

2 Department of Electrical Engineering and Computer Science, Syracuse University
3 Department of Computer Science and Engineering, SUNY University at Buffalo

4 Department of Electrical Engineering, University of Southern California
1 ren.ao@husky.neu.edu, 1{xue .lin,yanz.wanд}@northeastern.edu, 2{tzhan120, sye106, jli221}@syr.edu,

3 wenyaoxu@buffalo.edu, 4 xuehai.qian@usc.edu

ABSTRACT
To facilitate efficient embedded and hardware implementations of

deep neural networks (DNNs), a number of prior work are dedicated

to model compression techniques. The target is to simultaneously

reduce the model storage size and accelerate the computation, with

minor effect on accuracy. Two important categories of DNN model

compression techniques are weight pruning and weight quantiza-

tion. The former leverages the redundancy in the number of weights,

whereas the latter leverages the redundancy in bit representation

of weights. These two sources of redundancy can be combined,

thereby leading to a higher degree of DNN model compression.

However, there lacks a systematic framework of joint weight prun-

ing and quantization of DNNs, thereby limiting the available model

compression ratio. Moreover, the computation reduction, energy

efficiency improvement, and hardware performance overhead need

to be accounted for besides simply model size reduction.

To address these limitations, we present ADMM-NN, the first

algorithm-hardware co-optimization framework of DNNs using

Alternating Direction Method of Multipliers (ADMM), a powerful

technique to deal with non-convex optimization problems with

possibly combinatorial constraints. The first part of ADMM-NN is

a systematic, joint framework of DNN weight pruning and quanti-

zation using ADMM. It can be understood as a smart regularization

technique with regularization target dynamically updated in each

ADMM iteration, thereby resulting in higher performance in model

compression than prior work. The second part is hardware-aware

DNN optimizations to facilitate hardware-level implementations.

We perform ADMM-based weight pruning and quantization ac-

counting for (i) the computation reduction and energy efficiency

improvement, and (ii) the hardware performance overhead due

to irregular sparsity. The first requirement prioritizes the convo-

lutional layer compression over fully-connected layers, while the

latter requires a concept of the break-even pruning ratio, defined

as the minimum pruning ratio of a specific layer that results in no

hardware performance degradation.

Without accuracy loss, we can achieve 85× and 24× pruning

on LeNet-5 and AlexNet models, respectively, significantly higher

than prior work. The improvement becomes more significant when

focusing on computation reductions. Combining weight pruning

and quantization, we achieve 1,910× and 231× reductions in overall

model size on these two benchmarks, when focusing on data storage.

Highly promising results are also observed on other representative

to appear in ASPLOS 2019

DNNs such as VGGNet and ResNet-50. We release codes and models

at anonymous link http://bit.ly/2M0V7DO.

1 INTRODUCTION
The wide applications of deep neural networks (DNNs), especially

for embedded and IoT systems, call for efficient implementations of

at least the inference phase of DNNs in power-budgeted systems.

To achieve both high performance and energy efficiency, hardware
acceleration of DNNs, including both FPGA-based and ASIC-based

implementations, has been intensively studied both in academia

and industry [1, 2, 4, 6–8, 13, 16, 20, 21, 28, 31, 35, 37, 41, 43–

45, 48, 49, 51, 52, 54, 61, 62, 65]. With large model size (e.g., for

ImageNet dataset [11]), hardware accelerators suffer from the fre-

quent access to off-chip DRAM due to the limited on-chip SRAM

memory. Unfortunately, off-chip DRAM accesses consume signifi-

cant energy, e.g., 200× compared to on-chip SRAM [8, 21], and can

thus easily dominate the whole system power consumption.

To overcome this hurdle, a number of prior work are dedicated

to model compression techniques for DNNs, in order to simultane-

ously reduce the model size (storage requirement) and accelerate

the computation, with minor effect on accuracy. Two important cat-

egories of DNN model compression techniques are weight pruning
and weight quantization.

A pioneering work of weight pruning is Han et al. [24], which
is an iterative, heuristic method and achieves 9× reduction in

the number of weights in AlexNet (ImageNet dataset). This work

has been extended for improving the weight pruning ratio and

actual implementation efficiency [18, 20, 21]. Weight quantiza-

tion of DNNs has also been investigated in plenty of recent work

[9, 27, 33, 34, 40, 42, 55, 57, 66], quantizing DNN weights to binary

values, ternary values, or powers of 2, with acceptable accuracy loss.

Both storage and computational requirements are reduced in this

way. Multiplication operations may even be eliminated through

binary or ternary weight quantizations [9, 27, 42].

The effectiveness of weight pruning lies on the redundancy

in the number of weights in DNN, whereas the effectiveness of

weight quantization is due to the redundancy in bit representation

of weights. These two sources of redundancy can be combined,

thereby leading to a higher degree of DNN model compression.

Despite certain prior work investigating in this aspect using greedy,

heuristic method [21, 22, 66], there lacks a systematic framework

of joint weight pruning and quantization of DNNs. As a result they

cannot achieve the highest possible model compression ratio by

fully exploiting the degree of redundancy.

ar
X

iv
:1

81
2.

11
67

7v
1

 [
cs

.L
G

]
 3

1
D

ec
 2

01
8

Moreover, the prior work on weight pruning and quantization

mainly focus on reducing the model size of DNNs. As a result, the
major model compression is achieved in the fully-connected (FC)

layers, which exhibit higher degree of redundancy. On the other

hand, the convolutional (CONV) layers, which are the most compu-

tationally intensive part of DNNs, do not achieve a significant gain

in compression. For example, the pioneering work [24] achieves

only 2.7× weight reduction in CONV layers for AlexNet model,

which still has a high improvement margin when focusing on com-

putation reductions. Furthermore, the weight pruning technique

incurs irregularity in weight storage, i.e., the irregular sparsity, and
corresponding overheads in index storage and calculations, paral-

lelism degradation, etc. These overheads have important impacts

in hardware implementations. Take [24] as an example again. The

2.7×weight reduction in CONV layers often results in performance

degradations as observed in multiple actual hardware implementa-

tions [20, 53, 56, 58].

To address the above limitations, this paper presents ADMM-NN,

the first algorithm-hardware co-design framework of DNNs using

Alternating Direction Method of Multipliers (ADMM), which is a

powerful technique to deal with non-convex optimization problems

with possibly combinatorial constraints [5, 38, 50]. The ADMM-NN

framework is general, with applications at software-level, FPGA,

ASIC, or in combination with new devices and hardware advances.

The first part of ADMM-NN is a systematic, joint framework

of DNN weight pruning and quantization using ADMM. Through

the application of ADMM, the weight pruning and quantization

problems are decomposed into two subproblems: The first is mini-

mizing the loss function of the original DNN with an additional L2
regularization term, and can be solved using standard stochastic

gradient descent like ADAM [29]. The second one can be optimally

and analytically solved [5]. The ADMM framework can be under-

stood as a smart regularization technique with regularization target

dynamically updated in each ADMM iteration, thereby resulting in

high performance in model compression.

The second part of ADMM-NN is hardware-aware optimization

of DNNs to facilitate efficient hardware implementations. More

specifically, we perform ADMM-based weight pruning and quan-

tization accounting for (i) the computation reduction and energy

efficiency improvement, and (ii) the hardware performance over-

head due to irregular sparsity. We mainly focus on the model com-

pression on CONV layers, but the FC layers need to be compressed

accordingly in order not to cause overfitting (and accuracy degra-

dation). We adopt a concept of the break-even pruning ratio, defined
as the minimum weight pruning ratio of a specific DNN layer that

will not result in hardware performance (speed) degradation. These

values are hardware platform-specific. Based on the calculation of

such ratios through hardware synthesis (accounting for the hard-

ware performance overheads), we develop efficient DNN model

compression algorithm for computation reduction and efficient

hardware implementations.

The contributions of this work include: (i) ADMM-basedweight

pruning, ADMM-based weight quantization solutions of DNNs; (ii)

a systematic, joint framework for DNN model compression; and

(iii) hardware-aware DNN model compression for computation

reduction and efficiency improvement.

Figure 1: Illustration of weight pruning for DNNs.

Experimental results demonstrate the effectiveness of the pro-

posed ADMM-NN framework. For instance, without any accuracy

loss, we can achieve 85× and 24× weight pruning on LeNet-5 and

AlexNet models, respectively, which are significantly higher than

the prior iterative pruning (12× and 9×, respectively). Combining

weight pruning and quantization, we can achieve 1,910× and 231×
reductions in overall model size on these two benchmarks, when

focusing on data storage. Promising results are also observed on

other representative DNNs such as VGGNet and ResNet-50. The

computation reduction is even more significant compared with

prior work. Without any accuracy loss, we can achieve 3.6× re-

duction in the amount of computation compared with the prior

work [22, 24]. We release codes and models at anonymous link

(http://bit.ly/2M0V7DO).

2 BACKGROUND
2.1 Related Work on Weight Pruning and

Quantization
Weight pruning methods leverage the inherent redundancy in

the number of weights in DNNs, thereby achieving effective model

compression with negligible accuracy loss, as illustrated in Fig. 1.

A pioneering work of weight pruning is [24]. It uses a heuristic,

iterative method to prune the weights with small magnitudes and

retrain the DNN. It achieves 9× weight reduction on AlexNet for

ImageNet dataset, without accuracy degradation. However, this

original work achieves relatively low compression ratio (2.7× for

AlexNet) on the CONV layers, which are the key computational

part in state-of-the-art DNNs [25, 47]. Besides, indices are needed,

at least one per weight, to index the relative location of the next

weight. As a result, it suffers from low performance improvement

(sometimes even degradation) in actual hardware implementations

[53, 56, 58], when the overhead of irregular sparsity is accounted

for.

This work has been extended in two directions. The first is im-

proving the weight reduction ratio by using more sophisticated

heuristics, e.g., incorporating both weight pruning and growing

[19], using L1 regularization method [53], or genetic algorithm

[10]. As an example, the recent work NeST [10] achieves 15.7×
weight reduction on AlexNet with zero accuracy loss, at the cost of

significant training overhead. The second is enhancing the actual

implementation efficiency. This goal is achieved by either deriv-

ing an effective tradeoff between accuracy and compression ratio,

e.g., the energy-aware pruning [56], or incorporating regularity and

2

structures into the weight pruning framework, e.g., the channel
pruning [26] and structured sparsity learning [53] approaches.

Weight quantization methods leverage the inherent redun-

dancy in the number of bits for weight representation. Many re-

lated work [9, 27, 33, 34, 40, 42, 55, 66] present weight quantization

techniques to binary values, ternary values, or powers of 2 to fa-

cilitate hardware implementations, with acceptable accuracy loss.

The state-of-the-art technique adopts an iterative quantization and

retraining framework, with randomness incorporated in quanti-

zation [9]. It achieves less than 3% accuracy loss on AlexNet for

binary weight quantization [33]. It is also worth noticing that a

similar technique, weight clustering, groups weights into clusters
with arbitrary values. This is different from equal-interval values

as in quantization. As a result weight clustering is not as hardware-

friendly as quantization [22, 67].

Pros and cons of the two methods:Weight quantization has

clear advantage: it is hardware-friendly. The computation require-

ment is reduced in proportion to weight representation, and multi-

plication operations can be eliminated using binary/ternary quanti-

zations. On the other hand, weight pruning incurs inevitable im-

plementation overhead due to the irregular sparsity and indexing

[14, 22, 53, 56, 58].

The major advantage of weight pruning is the higher potential

gain in model compression. The reasons are two folds. First, there

is often higher degree of redundancy in the number of weights than

bit representation. In fact, reducing each bit in weight presentation

doubles the imprecision, which is not the case in pruning. Second,

weight pruning performs regularization that strengthens the salient

weights and prunes the unimportant ones. It can even increase the

accuracy with a moderate pruning ratio [23, 53]. As a result it

provides a higher margin of weight reduction. This effect does not

exist in weight quantization/clustering.

Combination: Because they leverage different sources of redun-
dancy, weight pruning and quantization can be effectively combined.

However, there lacks a systematic investigation in this direction.

The extended work [22] by Han et al. uses a combination of weight

pruning and clustering (not quantization) techniques, achieving 27×
model compression on AlexNet. This compression ratio has been

updated by the recent work [66] to 53× on AlexNet (but without

any specification about compressed model).

2.2 Basics of ADMM
ADMM has been demonstrated [38, 50] as a powerful tool for solv-

ing non-convex optimization problems, potentially with combina-

torial constraints. Consider a non-convex optimization problem

that is difficult to solve directly. ADMM method decomposes it into

two subproblems that can be solved separately and efficiently. For

example, the optimization problem

min

x
f (x) + д(x) (1)

lends itself to the application of ADMM if f (x) is differentiable and
д(x) has some structure that can be exploited. Examples of д(x)
include the L1-norm or the indicator function of a constraint set.

The problem is first re-written as

min

x,z
f (x) + д(z),

subject to x = z.
(2)

Next, by using augmented Lagrangian [5], the above problem is de-

composed into two subproblems on x and z. The first is minx f (x)+
q1(x), where q1(x) is a quadratic function. As q1(x) is convex,

the complexity of solving subproblem 1 (e.g., via stochastic gra-

dient descent) is the same as minimizing f (x). Subproblem 2 is

minz д(z) + q2(z), where q2(z) is a quadratic function. When func-

tion д has some special structure, exploiting the properties of д
allows this problem to be solved analytically and optimally. In this

way we can get rid of the combinatorial constraints and solve the

problem that is difficult to solve directly.

3 ADMM FRAMEWORK FOR JOINT WEIGHT
PRUNING AND QUANTIZATION

In this section, we present the novel framework of ADMM-based

DNN weight pruning and quantization, as well as the joint model

compression problem.

3.1 Problem Formulation
Consider a DNNwith N layers, which can be convolutional (CONV)

and fully-connected (FC) layers. The collection of weights in the

i-th layer isWi ; the collection of bias in the i-th layer is denoted

by bi . The loss function associated with the DNN is denoted by

f
(
{Wi }Ni=1, {bi }

N
i=1

)
.

The problem of weight pruning and quantization is an optimiza-

tion problem [57, 64]:

minimize

{Wi }, {bi }
f
(
{Wi }Ni=1, {bi }

N
i=1

)
,

subject to Wi ∈ Si , i = 1, . . . ,N .
(3)

Thanks to the flexibility in the definition of the constraint set

Si , the above formulation is applicable to the individual prob-

lems of weight pruning and weight quantization, as well as the

joint problem. For the weight pruning problem, the constraint set

Si = {the number of nonzero weights is less than or equal to αi },
where αi is the desired number of weights after pruning in layer

i1. For the weight quantization problem, the set Si={the weights in
layer i are mapped to the quantization values} {Q1,Q2, · · · ,QM }},
whereM is the number of quantization values/levels. For quantiza-

tion, theseQ values are fixed, and the interval between two nearest

quantization values is the same, in order to facilitate hardware

implementations.

For the joint problem, the above two constraints need to be

satisfied simultaneously. In other words, the number of nonzero

weights should be less than or equal to αi in each layer, while the

remaining nonzero weights should be quantized.

3.2 ADMM-based Solution Framework
The above problem is non-convex with combinatorial constraints,

and cannot be solved using stochastic gradient descent methods (e.g.,

ADAM [29]) as in original DNN training. But it can be efficiently

solved using the ADMM framework (combinatorial constraints can

1
An alternative formulation is to use a single α as an overall constraint on the number

of weights in the whole DNN.

3

be get rid of.) To apply ADMM, we define indicator functions

дi (Wi) =
{
0 if Wi ∈ Si ,
+∞ otherwise,

for i = 1, . . . ,N . We then incorporate auxiliary variables Zi and
rewrite problem (3) as

minimize

{Wi }, {bi }
f
(
{Wi }Ni=1, {bi }

N
i=1

)
+

N∑
i=1

дi (Zi),

subject to Wi = Zi , i = 1, . . . ,N .

(4)

Through application of the augmented Lagrangian [5], problem

(4) is decomposed into two subproblems by ADMM. We solve the

subproblems iteratively until convergence. The first subproblem is

minimize

{Wi }, {bi }
f
(
{Wi }Ni=1, {bi }

N
i=1

)
+

N∑
i=1

ρi
2

∥Wi − Zki + U
k
i ∥

2

F , (5)

where Uki is the dual variable updated in each iteration, Uki :=

Uk−1i +Wk
i − Zki . In the objective function of (5), the first term is

the differentiable loss function of DNN, and the second quadratic

term is differentiable and convex. The combinatorial constraints

are effectively get rid of. This problem can be solved by stochastic

gradient descent (e.g., ADAM) and the complexity is the same as

training the original DNN.

The second subproblem is

minimize

{Zi }

N∑
i=1

дi (Zi) +
N∑
i=1

ρi
2

∥Wk+1
i − Zi + Uki ∥

2

F . (6)

As дi (·) is the indicator function of Si , the analytical solution of

subproblem (6) is

Zk+1i = ΠSi (W
k+1
i + Uki), (7)

where ΠSi (·) is Euclidean projection of Wk+1
i + Uki onto the set Si .

The details of the solution to this subproblem is problem-specific.

For weight pruning and quantization problems, the optimal, analyt-

ical solutions of this problem can be found. The derived Zk+1i will

be fed into the first subproblem in the next iteration.

The intuition of ADMM is as follows. In the context of DNNs,

the ADMM-based framework can be understood as a smart regular-

ization technique. Subproblem 1 (Eqn. (5)) performs DNN training

with an additional L2 regularization term, and the regularization

target Zki − Uki is dynamically updated in each iteration through

solving subproblem 2. This dynamic updating process is the key

reason why ADMM-based framework outperforms conventional

regularization method in DNN weight pruning and quantization.

3.3 Solution to Weight Pruning and
Quantization, and the Joint Problem

Both weight pruning and quantization problems can be effectively

solved using the ADMM framework. For the weight pruning prob-

lem, the Euclidean projection Eqn. (7) is to keep αi elements in

Wk+1
i + Uki with largest magnitude and set the rest to be zero

[38, 50]. This is proved to be the optimal and analytical solution to

subproblem 2 (Eqn. (6)) in weight pruning.

Weight Pruning:
Formulate as prob. (4);

Subprob. 1:
Given Zi, optimize Wi;

Subprob. 2:
Given Wi, optimize Zi by
setting sparsity;

Subprob. 1:
Given Zi, optimize Wi;

Subprob. 2:
Given Wi, optimize Zi by
mapping to quant. values;

Weight Quantization:
Formulate as prob. (4);

Figure 2: Algorithm of joint weight pruning and quantiza-
tion using ADMM.

For the weight quantization problem, the Euclidean projection

Eqn. (7) is to set every element in Wk+1
i + Uki to be the quanti-

zation value closest to that element. This is also the optimal and

analytical solution to subproblem 2 in quantization. The determina-

tion of quantization values will be discussed in details in the next

subsection.

For both weight pruning and quantization problems, the first

subproblem has the same form when Zki is determined through

Euclidean projection. As a result they can be solved in the same

way by stochastic gradient descent (e.g., the ADAM algorithm).

For the joint problem of weight pruning and quantization, there

is an additional degree of flexibility when performing Euclidean

projection, i.e., a specific weight can be either projected to zero or

to a closest quantization value. This flexibility will add difficulty in

optimization. To overcome this hurdle, we perform weight pruning

and quantization in two steps. We choose to perform weight prun-

ing first, and then implement weight quantization on the remaining,

non-zero weights. The reason for this order is the following ob-

servation: There typically exists higher degree of redundancy in

the number of weights than the bit representation of weights. As a

result, we can typically achieve higher model compression degree

using weight pruning, without any accuracy loss, compared with

quantization. The observation is validated by prior work [18, 20, 21]

(although many are on clustering instead of quantization), and in

our own investigations. Fig. 2 summaries the key steps of solv-

ing the joint weight pruning and quantization problem based on

ADMM framework.

Thanks to the fast theoretical convergence rate of ADMM, the

proposed algorithms have fast convergence. To achieve a good

enough compression ratio for AlexNet, we need 72 hours for weight

pruning and 24 hours for quantization. This is much faster than

[24] that requires 173 hours for weight pruning only.

3.4 Details in Parameter Determination
3.4.1 Determination of Weight Numbers in Pruning: The most im-

portant parameters in the ADMM-based weight pruning step are

4

-2.1 0 1.2 0

0 1.8 0 0

0.4 0 0 0.9

0 -1.4 0 0

-2 1

2

0.5 1

-1.5

-4 2

4

1 2

-3

(a) Weights
after pruning

(b) Weights in
quantization values

(c) Weights in
quantization levels

Figure 3: Illustration of weight quantization (the interval
value qi = 0.5).

the αi values for each layer i . To determine these values, we start

from the values derived from the prior weight pruningwork [22, 24].

When targeting high compression ratio, we reduce the αi values
proportionally for each layer. When targeting computation reduc-

tions, we deduct the αi values for convolutional (CONV) layers,
because CONV layers account for the major computation compared

with FC layers. Our experimental results demonstrate about 2-3×
further compression under the same accuracy, compared with the

prior work [15, 22, 24, 59].

The additional parameters in ADMM-based weight pruning, i.e.,

the penalty parameters ρi , are set to be ρ1 = · · · = ρN = 3 × 10
−3
.

This choice is basically very close for different DNN models, such

as AlexNet [30] and VGG-16 [46]. The pruning results are not

sensitive to the penalty parameters of the optimal choice, unless

these parameters are increased or decreased by orders of magnitude.

3.4.2 Determination of Quantization Values: After weight pruning
is performed, the next step is weight quantization on the remaining,

non-zero weights. We use n bits for equal-distance quantization

to facilitate hardware implementations, which means there are a

total of M = 2
n
quantization levels. More specifically, for each

layer i , we quantize the weights into a set of quantization values

{−M

2

qi , ...,−2qi ,−qi ,qi , 2qi , ...,
M

2

qi }. Please note that 0 is not a
quantization value because it means that the corresponding weight

has been pruned.

The interval qi is the distance between two adjacent quantization
values, and may be different for different layers. This is compatible

with hardware implementations. This is because (i) the qi value
of each layer is stored along with the quantized weights of that

specific layer, and (ii) a scaling computation will be performed using

the qi value on the outputs of layer i . Such scaling computation is

needed in equal-distance weight quantization [34, 55].

Fig. 3 shows an example of weight quantization processure. Sup-

pose we have a 4 × 4 weight matrix. Fig. 3 (a) is the weights to

be quantized, obtained after pruning. Based on the weight values,

qi = 0.5, n = 3, andM = 2
n
are determined. Fig. 3 (b) is the weight

values after quantization, and Fig. 3 (c) is the weights represented in

quantization levels. Note that quantization levels encoded in binary

bits are the operands to be stored and operated in the hardware. For

the case of Fig. 3, quantization levels {−4,−3,−2,−1, 1, 2, 3, 4} are
encoded using 3 binary bits, since 0 denoting pruned weights is not

needed. Weights in quantization levels (Fig. 3 (c)) times qi = 0.5

resulting in quantized weights (Fig. 3 (b)).

The interval qi and number of quantization levels M (n) are
pre-defined, and should be determined in an effective manner. For

M (n) values, we start from the results of some prior work like

[24], and reduce n accordingly. For example, [22] uses on average

around 5 bits for quantization (essentially clustering) in AlexNet,

whereas our results show that 3-4 bits on average are sufficient in

quatization without incurring any accuracy loss, on representative

benchmark DNNs.

To determine qi , let w
j
i denote the j-th weight in layer i , and

f (w j
i) denote the quantization function to the closest quantization

value. Then the total square error in a single quantization step is

given by

∑
j
��w j

i − f (w j
i)
��2
. We deriveqi using binary search method,

such that the above total square error is minimized. In this way we

determine both qi andM (n) for weight quantization.

4 RESULTS AND DISCUSSIONS ON DNN
MODEL COMPRESSIONS

In this section, we summarize the software-level results on DNN

model compression using the proposedADMM framework ofweight

pruning and quantization. We perform testing on a set of rep-

resentative DNN benchmarks, LeNet-5 [32] for MNIST dataset,

AlexNet [30] (BVLC model and CaffeNet model, both open-source),

VGGNet [46], and ResNet-50 [25] for ImageNet dataset. We ini-

tialize ADMM using pretrained DNN models and then perform

weight pruning/quantization. We focus on the model compression

of the overall DNN model (i.e., the total number of weights and

total number of bits for weight representations). We perform com-

parison with representative works on DNN weight pruning and

quantization (clustering), and demonstrate the significant improve-

ment using the proposed ADMM framework. Algorithm implemen-

tations are on the open-source Caffe tool with code/model release,

and DNN training and compression are performed using NVIDIA

Tesla P100 and GeForce GTX 1080Ti GPUs.

4.1 Results on ADMM-based Weight Pruning
Table 1 shows the weight pruning results on the LeNet-5 model, in

comparison with various benchmarks. LeNet-5 contains two CONV

layers, two pooling layers, and two FC layers, and can achieve 99.2%

test accuracy on the MNIST dataset. Our ADMM-based weight

pruning framework does not incur accuracy loss and can achieve

a much higher weight pruning ratio on these networks compared

with the prior iterative pruning heuristic [24], which reduces the

number of weights by 12× on LeNet-5. In fact, our pruning method

reduces the number of weights by 85×, which is 7.1× improvement

compared with [24]. The maximum weight reduction is 167× for

LeNet-5 when the accuracy is as high as 99.0%.

Similar results can be achieved on the BVLC AlexNet model and

VGGNet model on the ImageNet ILSVRC-2012 dataset. The original

BVLC AlexNet model can achieve a top-1 accuracy 57.2% and a

top-5 accuracy 80.2% on the validation set, containing 5 CONV (and

pooling) layers and 3 FC layers with a total of 60.9M parameters.

The original VGGNet model achieves a top-1 accuracy 69.0% and

top-5 accuracy 89.1% on ImageNet dataset, with a total of 138M

parameters. Table 2 shows the weight pruning comparison results

on AlexNet while Table 3 shows the comparison results on VGGNet.

The proposed ADMM method can achieve 24× weight reduction

5

Table 1: Weight pruning ratio and accuracy on the LeNet-5 model for MNIST dataset by our ADMM-based framework and
other benchmarks.

Benchmark Top 1 accuracy Number of parameters Weight pruning ratio

Original LeNet-5 Model 99.2% 430.5K 1×
Our Method 99.2% 5.06K 85×
Our Method 99.0% 2.58K 167×
Iterative pruning [24] 99.2% 35.8K 12×
Learning to share [63] 98.1% 17.8K 24.1×
Net-Trim [3] 98.7% 9.4K 45.7×

Table 2: Weight pruning ratio and accuracy on the AlexNet model for ImageNet dataset by our ADMM-based framework and
other benchmarks.

Benchmark Top 1 accuracy Top 5 accuracy Number of parameters Weight pruning ratio

Original AlexNet Model 57.2% 80.2% 60.9M 1×
Our Method 57.1% 80.2% 2.5M 24×
Our Method 56.8% 80.1% 2.05M 30×
Iterative pruning [24] 57.2% 80.3% 6.7M 9×
Low rank & sparse [59] 57.3% 80.3% 6.1M 10×
Optimal Brain Surgeon [15] 56.9% 80.0% 6.7M 9.1×
SVD [12] - 79.4% 11.9M 5.1×
NeST [10] 57.2% 80.3% 3.9M 15.7×

Table 3: Weight pruning ratio and accuracy on the VGGNet model for ImageNet dataset by our ADMM-based framework and
other benchmarks.

Benchmark Top 1 accuracy Top 5 accuracy Number of parameters Weight pruning ratio

Original VGGNet Model 69.0% 89.1% 138M 1×
Our Method 68.7% 88.9% 5.3M 26×
Our Method 69.0% 89.1% 6.9M 20×
Iterative pruning [24] 68.6% 89.1% 10.3M 13×
Low rank & sparse [59] 68.8% 89.0% 9.2M 15×
Optimal Brain Surgeon [15] 68.0% 89.0% 10.4M 13.3×

Table 4: Weight pruning ratio and accuracy on the ResNet-50 model for ImageNet dataset.

Benchmark Accuracy degradation Number of parameters Weight pruning ratio

Original ResNet-50 Model 0.0% 25.6M 1×
Fine-grained Pruning [36] 0.0% 9.8M 2.6×
Our Method 0.0% 3.6M 7×
Our Method 0.3% 2.8M 9.2×
Our Method 0.8% 1.47M 17.4×

in AlexNet and 26× weight reduction in VGGNet, without any

accuracy loss. These results are at least twice as the state-of-the-

art, and clearly demonstrate the advantage of the proposed weight

pruning method using ADMM.

For the results on ResNet-50 model on ImageNet as shown in Ta-

ble 4, we achieve 7× weigh pruning without accuracy degradation,

and 17.4× with minor accuracy degradation less than 1%.

The reasons for the advantage are two folds: First, the ADMM-

based framework is a systematic weight pruning framework based

on optimization theory, which takes an overall consideration of

the whole DNN instead of making local, greedy pruning choices.

In fact, with a moderate pruning ratio of 3×, the top-1 accuracy of

AlexNet can be even increased to 59.1%, almost 2% increase. Second,

as discussed before, the ADMM-based framework can be perceived

as a smart, dynamic DNN regularization technique, in which the

regularization target is analytically adjusted in each iteration. This

is very different from the prior regularization techniques [17, 53]

in which the regularization target is predetermined and fixed.

6

4.2 Results on ADMM-based Joint Weight
Pruning and Quantization for DNNs

In this section we perform comparisons on the joint weight pruning

and quantization results. Table 5 presents the results on LeNet-5,

while Table 6 presents the results on AlexNet, VGGNet, and ResNet-

50. We can simultaneously achieve 167× pruning ratio on LeNet-5,

with an average of 2.78-bit for weight representation (fewer-bit

representation for FC layers and more-bit for CONV layers). When

accounting for the weight data representation only, the overall

compression ratio is 1,910× on LeNet-5 when comparing with 32-bit

floating point representations. For weight data representation, only

0.89KB is needed for the whole LeNet-5 model with 99% accuracy.

This is clearly approaching the theoretical limit considering the

input size of 784 pixels (less than 1K) for each MNIST data sample.

For AlexNet and VGGNet models, we can use an average of 3.7-

bit for weight representation. When accounting for the weight data

only, the overall compression ratios are close to 200×. These results
are significantly higher than the prior work such as [22, 24], even

when [22] focuses onweight clustering instead of quantization
2
. For

example, [24] achieves 9× weight pruning on AlexNet and uses an

average of higher than 5 bits (8 bits for CONV layers and 5 bits for

FC layers) for weight representation. These results are also higher

than performing weight quantization/clustering alone because the

maximum possible gain when performing quantization/clustering

alone is 32 (we need to use 1 bit per weight anyway) compared

with floating-point representations, let alone accuracy degradations.

These results clearly demonstrate the effectiveness of the proposed

ADMM framework on joint weight pruning and quantization for

DNNs. Similar results are also observed on the joint weight pruning

and quantization results on ResNet-50 model.

However, we must emphasize that the actual storage reduction

cannot reach such a high gain. For DNNs, the model size is defined
as the total number of bits (or Bytes) to actually store a DNN model.

The reason for this gap is the indices, which are needed (at least)

one per weight with weight pruning in order to locate the ID of the

next weight [24]. For instance, we need more bits for each index for

the pruned AlexNet than [24] because we achieve a higher pruning

ratio. The storage requirement for indices will be even higher com-

pared with the actual data, because the ADMM framework is very

powerful in weight quantization. This will add certain overhead for

the overall model storage, as also shown in the tables.

Finally, we point out that it may be somewhat biased when only

considering the model size reduction of DNNs. We list in Table 7 the

layer-wise weight pruning results for AlexNet, using the proposed

ADMM framework. We can observe that the major weight pruning

and quantization are achieved in the FC layers, compared with

CONV layers. The reasons are that the FC layers account for more

than 90% of weights and possess a higher degree of redundancy,

thereby enabling higher degree of weight pruning/quantization.

This is the same as the prior work such as [24], which achieves

9× overall weight reduction while only 2.7× reduction on CONV

layers. It uses 5-bit for weight representation of FC layers and 8 bits

for CONV layers. On the other hand, we emphasize that the CONV

2
Weight clustering is less hardware-friendly, but should perform better than weight

quantization in model compression. The reason is because weight quantization can be

perceived as a special case of clustering.

layers account for the major computation in state-of-the-art DNNs,

e.g., 95% to 98% in AlexNet and VGGNet [30, 46], and even more

for ResNet [25]. For computation reduction and energy efficiency

improvement, it is more desirable to focus on CONV layers for

weight pruning and quantization. This aspect will be addressed in

the next section.

4.3 Making AlexNet and VGGNet On-Chip
An important indication of the proposed ADMM framework is that

the weights of most of the large-scale DNNs can be stored on-chip

for FPGA and ASIC designs. Let us consider AlexNet and VGGNet

as examples. For AlexNet, the number of weights before pruning is

60.9M, corresponding to 244MB storage (model size) when 32-bit

floating point number is utilized for weight representation. Using

the proposed ADMM weight pruning and quantization framework,

the total storage (model size) of AlexNet is reduced to 2.45MB (using

2.25M weights) when the indices are accounted for. This model size

is easily accommodated by the medium-to-high end FPGAs, such as

Xilinx Kintex-7 series, and ASIC designs. This is achieved without

any accuracy loss.

On the other hand, VGGNet, as one of the largest DNNs that is

widely utilized, has a total number of 138M weights, correspond-

ing to 552MB storage when 32-bit floating point number is used

for weight representation. Using the proposed ADMM framework,

the total model size of VGGNet is reduced to 8.3MB (using 6.9M

weights) when the indices are accounted for. This model size can

still be accommodated by a single high-end FPGA such as Altera

(Intel) DE-5 and Xilinx Virtex-7. The effect that large-scale AlexNet

and VGGNet models can be stored using on-chip memory of sin-

gle FPGA/ASIC will significantly facilitate the wide application of

large-scale DNNs, in embedded, mobile, and IoT systems. It can

be a potential game changer. On the other hand, when accounting

for the computation reductions rather than mere storage (model

size) reduction, it is more desirable to focus mainly on the model

compression on CONV layers rather than the whole DNN model.

Also it is desirable to focus more on CONV layers since a smaller

on-chip memory can be both cost and speed-beneficial, which is

critical especially for custom ASIC.

5 HARDWARE-AWARE COMPUTATION
REDUCTION

Motivation As discussed in the previous section and illustrated

in Table 7, the current gains in weight pruning and quantization

are mainly attributed to the redundancy in FC layers. This opti-

mization target is not the most desirable when accounting for the

computation reduction and energy efficiency improvement. The

reason is that CONV layers account for the major computation

in state-of-the-art DNNs, even reaching 98% to 99% for the recent

VGGNet and ResNet models [30, 46]. In actual ASIC design and

implementations, it will be desirable to allocate on-chip memory

for the compressed CONV layers while using off-chip memory

for the less computationally intensive FC layers. In this way the

on-chip memory can be reduced, the memory speed can be faster,

while the major computation part of DNN (CONV layers) can be

accelerated. Therefore it is suggested to perform weight pruning

and quantization focusing on the CONV layers.

7

Table 5: Model size compression ratio on the LeNet-5 model for MNIST dataset by our ADMM-based framework and baseline.

Benchmark Accuracy

degrade

Para. No. CONV

quant.

FC quant. Total data size/ Com-

press ratio

Total model size (in-

cluding index)/ Com-

press ratio

Original LeNet-5 0.0% 430.5K 32b 32b 1.7MB 1.7MB

Our Method 0.2% 2.57K 3b 2b 0.89KB / 1,910× 2.73KB / 623×
Iterative pruning [22] 0.1% 35.8K 8b 5b 24.2KB / 70.2× 52.1KB / 33×

Table 6: Model size compression ratio on the AlexNet, VGGNet, and ResNet-50 models for ImageNet dataset by our ADMM-
based framework and baselines.

Benchmark Accuracy

degrade

Para. No. CONV

quant.

FC quant. Total data size/ Com-

press ratio

Total model size (in-

cluding index)/ Com-

press ratio

Original AlexNet 0.0% 60.9M 32b 32b 243.6MB 243.6MB

Our Method 0.2% 2.25M 5b 3b 1.06MB / 231 × 2.45MB / 99×
Iterative pruning [22] 0.0% 6.7M 8b 5b 5.4MB / 45× 9.0MB / 27×
Binary quant. [33] 3.0% 60.9M 1b 1b 7.3MB / 32× 7.3MB / 32×
Ternary quant. [33] 1.8% 60.9M 2b 2b 15.2MB / 16× 15.2MB / 16×
Original VGGNet 0.0% 138M 32b 32b 552MB 552MB

Our Method 0.1% 6.9M 5b 3b 3.2MB / 173× 8.3MB / 66.5×
Iterative pruning [22] 0.0% 10.3M 8b 5b 8.2MB / 67× 17.8MB / 31×
Binary quant. [33] 2.2% 138M 1b 1b 17.3MB / 32× 17.3MB / 32×
Ternary quant. [33] 1.1% 138M 2b 2b 34.5MB / 16× 34.5MB / 16×
Original ResNet-50 0.0% 25.6M 32b 32b 102.4MB 102.4MB

Our Method 0.0% 3.6M 6b 6b 2.7MB / 38× 4.1MB / 25.3×
Our Method 2.0% 1.47M 4b 4b 0.73MB / 140× 1.65MB / 62×

Table 7: Layer-wise weight pruning results on the AlexNet
model without accuracy loss using the ADMM framework.

Layer Para.

No.

Para. No. af-

ter prune

Para. Percentage af-

ter prune

conv1 34.8K 28.19K 81%

conv2 307.2K 61.44K 20%

conv3 884.7K 168.09K 19%

conv4 663.5K 132.7K 20%

conv5 442.4K 88.48K 20%

fc1 37.7M 1.06M 2.8%

fc2 16.8M 0.99M 5.9%

fc3 4.1M 0.38M 9.3%

total 60.9M 2.9M 4.76%

The prior weight pruning work [22, 24] cannot achieve a satis-

factory weight pruning ratio on CONV layers while guaranteeing

the overall accuracy. For example, [24] achieves only 2.7× weight

pruning on the CONV layers of AlexNet. In fact, the highest gain

in reference work on CONV layer pruning is 5.0× using L1 regu-
larization [53], and does not perform any pruning on FC layers.

Sometimes, a low weight pruning ratio will result in hardware per-

formance degradation, as reported in a number of actual hardware

implementations [53, 56, 58]. The key reason is the irregularity

in weight storage, the associated overhead in calculating weight

indices, and the degradation in parallelism. This overhead is en-

countered in the PE (processing element) design when sparsity

(weight pruning) is utilized. This performance overhead needs to

be accurately characterized and effectively accounted for in the

hardware-aware weight pruning framework.

5.1 Algorithm-Hardware Co-Optimization
In a nutshell, we need to (i) focus mainly on CONV layers in weight

pruning/quantization, and (ii) effectively account for the hardware

performance overhead for irregular weight storage, in order to

facilitate efficient hardware implementations. We start from an

observation about coordinating weight pruning in CONV and FC

layers for maintaining overall accuracy.

Observation on Coordinating Weight Pruning: Even when

we focus on CONV layer weight pruning, we still need to prune the

FC layers moderately (e.g., about 3-4×) for maintaining the overall

accuracy. Otherwise it will incur certain accuracy degradation.

Although lack of formal proof, the observation can be intuitively

understood in the following way: The original DNN models, such

as LeNet-5, AlexNet, or VGGNet, are heavily optimized and the

structures of CONV and FC layers match each other. Pruning the

CONV layers alone will incur mismatch in structure and number

of weights with the FC layers, thereby incurring overfitting and

accuracy degradation. This is partially the reason why prior work

like L1 regularization [53] does not have satisfactory performance

even when only focusing on CONV layers. This observation brings

8

0.5% to 1% accuracy improvement, along with additional benefit

of simultaneous computation reduction and model size reduction,

and will be exploited in our framework.

Break-even Weight Pruning Ratio: Next, we define the con-
cept of break-even weight pruning ratio, as the minimum weight

pruning ratio of a specific (CONV or FC) layer that will not result

in hardware performance degradation. Below this break-even ratio,

performance degradation will be incurred, as actually observed in

[53, 56, 58]. This break-even pruning ratio is greater than 1 because

of the hardware performance overhead from irregular sparsity. It is

hardware platform-specific. It is important to the hardware-aware

weight pruning framework. For example, if the actual weight prun-

ing ratio for a specific layer is lower than the break-even ratio,

there is no need to perform weight pruning on this layer. In this

case, we will restore the original structure of this layer and this

will leave more margin for weight pruning in the other layers with

more benefits.

Break-evenPruningRatioCalculation: To calculate the break-
even pruning ratios, we fairly compare (i) the inference delay of

the hardware implementation of the original DNN layer without

pruning with (ii) the delays of hardware implementations under

various pruning ratios. The comparison is under the same hardware

area/resource. We control two variables: (i) a predefined, limited

hardware area, and (ii) the goal to complete all computations in one

DNN layer, which will be different under various pruning ratios.

Specifically, we set the hardware implementation of the original

layer as baseline, thus its hardware area becomes a hard limit. Any

hardware implementations supporting weight pruning cannot ex-

ceed this limit.

Hardware resources of the baseline consist of two parts: one

is process elements (PE) responsible for GEMM (general matrix

multiplication) and activation calculations, and the other is SRAM

that stores features, weights, and biases. Although the implementa-

tions under various pruning ratios are also composed of PEs and

SRAMs, the differences lie in three aspects: (i) the area occupied

by SRAM is different. This is because with different pruning ratios,

the numbers of indices are different, and the numbers of weights

are different as well; (ii) the remaining resources for PE implemen-

tation are thus different. It is possible to have more resources for

PE implementation or less; (iii) the maximum frequency of each

type of implementations is different, due to the difference in the

size of PEs and index decoding components.

Being aware of these differences, we implement the baseline and

9 pruning cases with pruning portions ranging from 10% to 90%. We

adopt the state-of-the-art hardware architecture to support weight

pruning [39, 60]. The hardware implementations are synthesized

in SMIC 40nm CMOS process using Synopsys Design Compiler.

Then we measure the delay values of those implementations. The

speedup values of the pruning cases over the baseline are depicted

in Fig. 4. In the figure, the speedup of the baseline itself is 1, and the

results suggest that the pruning portion should be higher than about

55%, in order to make sure that the benefits of pruning outperforms

the overhead of indices. This corresponds to a break-even weight

pruning ratio of 2.22.

Hardware-AwareDNNModel CompressionAlgorithm: Based
on the efficient calculation of such break-even pruning ratios, we

Figure 4: Speedup comparison between pruned cases and
baseline on a DNN layer, in order to derive the break-even
weight pruning ratio.

develop efficient hardware-aware DNN model compression algo-

rithm. We mainly focus on the CONV layers and perform weight

pruning/quantization on FC layers accordingly to maintain accu-

racy. The detailed algorithm description is in Fig. 5 as detailed in

the following.

ai

For each layer i:
 Decrease by binary search;

Initialize 's;

ai

ADMM-based weight pruning;

ADMM-based weight quantization;

For each layer i:
 If 1/ < break-even ratio
 Restore structure of layer i

ai

For each layer i not restored:
 Decrease by binary search;

ADMM-based weight pruning;

ADMM-based weight quantization;

ai

Final Results

Figure 5: Algorithm of hardware-aware DNN model com-
pression.

Consider a DNN with N ′
CONV layers. Let Ci (1 ≤ i ≤ N ′

) de-

note the amount of computation, in the total number of operations,

of the original DNN without weight pruning. Let αi denote the

portion of remaining weights in layer i after weight pruning, and
1

αi
denotes the pruning ratio in layer i . We start from pretrained

DNN models, and initialize αi values from those in the prior work

such as [22, 24], which can partially reveal the sensitivity to weight

pruning for each layer. Since (i) our ADMM framework achieves

higher performance and (ii) we focus mainly on CONV layers, we

are able to reduce αi values for different i . This is an iterative proce-

dure. The amount of reduction ∆αi in each iteration is proportional

to Ci . The underlying principle is to reduce the computation to a

larger extent in those layers that are more computationally inten-

sive (and likely, with a higher degree of redundancy). Binary search

algorithm is exploited to find the updated αi values that will not
result in any accuracy degradation (this constraint can be relieved

to a pre-defined accuracy degradation constraint). Please note that

9

the FC layers will be pruned in accordance through this procedure

for accuracy considerations.

The next step is to check whether the pruning ratios

1

αi
sur-

pass the hardware-specific break-even pruning ratio. If not then

performing pruning on layer i will not be beneficial for hardware
acceleration. In this case we will (i) restore the structure for all

layers that cannot surpass the break-even ratio (e.g., the first layer

in AlexNet in practice), and (ii) reduce the αi values of the other
layers and perform ADMM-based weight pruning. Binary search

is also utilized to accelerate the search. Upon convergence those

layers will still surpass the break-even pruning ratio since we only

decrease αi values in the procedure.

After weight pruning, we perform ADMM-based weight quanti-

zation in order to further reduce computation and improve energy

efficiency. Weight quantization is performed on both CONV and FC

layers, but CONV layers will be given top priority in this procedure.

6 RESULTS AND DISCUSSIONS ON
COMPUTATION REDUCTION AND
HARDWARE-AWARE OPTIMIZATIONS

In this section, we first perform comparison on the computation

reduction results focusing on the CONV layers (FC layers will be

pruned accordingly as well to maintain accuracy). Next we com-

pare on the synthesized hardware speedup results between the

proposed hardware-aware DNNmodel compression algorithm with

baselines. The baselines include the iterative weight pruning and

weight clustering work [22, 24], and recent work [36, 53] of DNN

weight pruning focusing on computation reductions. Due to space

limitation, we only illustrate the comparison results on AlexNet

(BVLC and CaffeNet models) on ImageNet dataset, but we achieve

similar results on other benchmarks. Again algorithm implementa-

tions are on the open-source Caffe tool with code/model release,

and DNN model training and model compression are performed

using NVIDIA 1080Ti and P100 GPUs.

6.1 Computation Reduction Comparisons
Table 8 illustrates the comparison results on the computation re-

duction for the five CONV layers of AlexNet model. We show both

layer-wise results and the overall results for all CONV layers. We

use two metrics to quantify computation reduction. The first metric

is the number of multiply-and-accumulation (MAC) operations,

the key operations in the DNN inference procedure. This metric is

directly related to the hardware performance (speed). The second

metric is the product of the number of MAC operations and bit

quantization width for each weight. This metric is directly related to

the energy efficiency of (FPGA or ASIC) hardware implementation.

As can be observed in the table, the proposed ADMM framework

achieves significant amount of computation reduction compared

with prior work, even when some [36, 53] also focus on compu-

tation reductions. For the first metric of computation reduction,

the improvement can be close to 3× compared with prior work for

CONV layers, and this improvement reaches 3.6× for the second

metric. The improvement on the second metric of computation

reduction is even higher because of the higher capability of the pro-

posed method in weight quantization. We can also observe that the

first CONV layer is more difficult for weight pruning and quantiza-

tion compared with the other layers. This will impact the hardware

speedup as shall be seen in the latter discussions.

Because CONV layers are widely acknowledged to be more dif-

ficult to perform pruning than FC layers, the high performance

in CONV layer pruning and quantization further demonstrates

the effectiveness of the ADMM-based DNN model compression

technique. Besides, although our results focus on CONV layer com-

pression, we achieve 13× weight pruning ratio on the overall DNN

model because FC layers are pruned as well. The overall weight

pruning on DNN model is also higher than the prior work. The

layer-wise pruning results are shown in Table 8. In this way we

simultaneously achieve computation and model size reduction.

6.2 Synthesized Hardware Speedup
Comparisons

Table 9 illustrates the comparison results, between the hardware-

aware DNN model compression algorithm and baselines, on the

synthesized hardware speedup for the five CONV layers of AlexNet

model. The overall weight pruning ratio on the five CONV layers

is also provided. We show both layer-wise results and the overall

results for all CONV layers. The overall result is a weighted sum

of the layer-wise results because of different amount of computa-

tion/parameters for each layer. The synthesized results are based

on (i) the PE synthesis based on SMIC 40nm CMOS process using

Synopsys Design Compiler, and (ii) the execution on a represen-

tative CONV layer (CONV4 of AlexNet). The hardware synthesis

process accounts for the hardware performance overhead of weight

pruning. Although the synthesis is based on ASIC setup, the con-

clusion generally holds for FPGA as well. For hardware speedup

synthesis, we use the same number of PEs for the proposed method

and baselines, and do not account for the advantage of the pro-

posed method in weight quantization. This metric is conservative

for the proposed method, but could effectively illustrate the effect

of hardware-aware DNN optimization and the break-even pruning

ratio.

In terms of hardware synthesis results, our methods result in

speedup compared with original DNNs without compression. On

the other hand, the baselines suffer from speed degradations. Such

degradations are actually observed in prior work [24, 53, 58]. As can

be observed from the table, we do not perform any weight pruning

on the first CONV layer. This is because the weight pruning ratio

for this layer is lower than the break-even pruning ratio derived

in the previous section. In this way weight pruning will not bring

about any speedup benefit for this layer. The underlying reason is

that weights in the first CONV layer are directly connected to the

pixels of the input image, and therefore most of the weights in the

first CONV layer are useful. Hence the margin of weight pruning

in the first CONV layer is limited. Although the first CONV layer

is small compared with the other layers in terms of the number

of weights, it will become the computation bottleneck among all

CONV layers. This observation is also true in other DNNs like

VGGNet or ResNet. When neglecting this factor, the baseline meth-

ods will incur degradation in the speed (which is common for all

baselines in the first CONV layer) compared with the original DNN

10

Table 8: Comparison results on the computation reduction with two metrics for the five CONV layers of AlexNet model.

MAC Operations
CONV1 CONV2 CONV3 CONV4 CONV5 CONV1-5 FC1 FC2 FC3 Overall prune

AlexNet 211M 448M 299M 224M 150M 1,332M 75M 34M 8M -

Ours 133M 31M 18M 16M 11M 209M 7M 3M 2M 13×
Han [24] 177M 170M 105M 83M 56M 591M 7M 3M 2M 9×
Mao [36] 175M 116M 67M 52M 35M 445M 5M 2M 1.5M 12×
Wen [53] 180M 107M 44M 42M 36M 409M 75M 34M 8M 1.03×

MAC × bits
Ours 931M 155M 90M 80M 55M 1,311M - - - -

Han [24] 1,416M 1,360M 840M 664M 448M 4,728M - - - -

Table 9: The synthesized hardware speedup for the five CONV layers of AlexNet model

CONV1 CONV2 CONV3 CONV4 CONV5 CONV1-5 speedup Conv1-5 prune ratio Accuracy Degra.

AlexNet 1× 1× 1× 1× 1× 1× 1× 0.0%

Ours1 1× 7× 7.5× 7.2× 7.1× 3.6× 13.1× 0.0%

Ours2 1× 8.6× 9.0× 8.8× 8.6× 3.9× 25.5× 1.5%

Han [24] 0.16× 1.4× 1.6× 1.5× 1.5× 0.64× 2.7× 0.0%

Mao [36] 0.17× 2.6× 3× 3× 3× 0.81× 4.1× 0.0%

Wen [53] 0.15× 2.9× 4.6× 3.8× 2.9× 0.77× 5× 0.0%

models without compression. Of course, speedups will be observed

in baselines if they leave CONV1 unchanged.

When we target at further weight pruning on the CONV layers

with certain degree of accuracy loss, we can achieve 25.5× weight

pruning on overall CONV layers (40.5× pruning on CONV2-5)

with only 1.5% accuracy loss. In contrast to the significant pruning

ratio, the synthesized speedup only has a marginal increase. This is

because of the bottleneck of CONV1 and the saturation of speedup

in the other CONV layers.

7 CONCLUSION
We present ADMM-NN, an algorithm-hardware co-optimization

framework of DNNs using Alternating Direction Method of Mul-

tipliers (ADMM). The first part of ADMM-NN is a systematic,

joint framework of DNN weight pruning and quantization using

ADMM. The second part is hardware-aware optimizations to facili-

tate hardware-level implementations. We perform ADMM-based

weight pruning and quantization accounting for (i) the compu-

tation reduction and energy efficiency improvement, and (ii) the

performance overhead due to irregular sparsity. Exprimental results

demonstrate that by combining weight pruning and quantization,

the proposed framework can achieve 1,910× and 231× reductions in

the overall model size on the LeNet-5 and AlexNet models. Highly

promising results are also observed on VGGNet and ResNet models.

Also, without any accuracy loss, we can achieve 3.6× reduction in

the amount of computation, outperforming prior work.

ACKNOWLEDGMENTS
This work is partly supported by the National Science Founda-

tion (CNS-1739748, CNS-1704662, CCF-1733701, CCF-1750656, CNS-

1717984, and CCF-1717754).

REFERENCES
[1] http://www.techradar.com/news/computing-components/

processors/google-s-tensor-processing-unit-explained-\

this-is-what-the-future-of-computing-looks-\like-1326915.

[2] https://www.sdxcentral.com/articles/news/intels-deep-learning-chips-will-arrive-2017/

2016/11/.

[3] Aghasi, A., Abdi, A., Nguyen, N., and Romberg, J. Net-trim: Convex pruning

of deep neural networks with performance guarantee. In Advances in Neural
Information Processing Systems (2017), pp. 3177–3186.

[4] Bang, S., Wang, J., Li, Z., Gao, C., Kim, Y., Dong, Q., Chen, Y.-P., Fick, L., Sun, X.,

Dreslinski, R., et al. 14.7 a 288µw programmable deep-learning processor with

270kb on-chip weight storage using non-uniform memory hierarchy for mobile

intelligence. In Solid-State Circuits Conference (ISSCC), 2017 IEEE International
(2017), IEEE, pp. 250–251.

[5] Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J., et al. Distributed

optimization and statistical learning via the alternating direction method of

multipliers. Foundations and Trends® in Machine learning 3, 1 (2011), 1–122.
[6] Chen, T., Du, Z., Sun, N., Wang, J., Wu, C., Chen, Y., and Temam, O. Diannao:

A small-footprint high-throughput accelerator for ubiquitous machine-learning.

ACM Sigplan Notices 49 (2014), 269–284.
[7] Chen, Y., Luo, T., Liu, S., Zhang, S., He, L., Wang, J., Li, L., Chen, T., Xu, Z.,

Sun, N., et al. Dadiannao: A machine-learning supercomputer. In Proceedings of
the 47th Annual IEEE/ACM International Symposium on Microarchitecture (2014),
IEEE Computer Society, pp. 609–622.

[8] Chen, Y.-H., Krishna, T., Emer, J. S., and Sze, V. Eyeriss: An energy-efficient

reconfigurable accelerator for deep convolutional neural networks. IEEE Journal
of Solid-State Circuits 52, 1 (2017), 127–138.

[9] Courbariaux, M., Bengio, Y., and David, J.-P. Binaryconnect: Training deep

neural networks with binary weights during propagations. In Advances in neural
information processing systems (2015), pp. 3123–3131.

[10] Dai, X., Yin, H., and Jha, N. K. Nest: a neural network synthesis tool based on a

grow-and-prune paradigm. arXiv preprint arXiv:1711.02017 (2017).

[11] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei, L. Imagenet: A

large-scale hierarchical image database. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (2009), pp. 248–255.

[12] Denton, E. L., Zaremba, W., Bruna, J., LeCun, Y., and Fergus, R. Exploiting lin-

ear structure within convolutional networks for efficient evaluation. In Advances
in neural information processing systems (2014), pp. 1269–1277.

[13] Desoli, G., Chawla, N., Boesch, T., Singh, S.-p., Guidetti, E., De Ambroggi, F.,

Majo, T., Zambotti, P., Ayodhyawasi, M., Singh, H., et al. 14.1 a 2.9 tops/w

deep convolutional neural network soc in fd-soi 28nm for intelligent embedded

systems. In Solid-State Circuits Conference (ISSCC), 2017 IEEE International (2017),
IEEE, pp. 238–239.

[14] Ding, C., Liao, S., Wang, Y., Li, Z., Liu, N., Zhuo, Y., Wang, C., Qian, X., Bai, Y.,

11

http://www.techradar.com/news/computing-components/processors/google-s-tensor-processing-unit-explained-\this-is-what-the-future-of-computing-looks-\like-1326915
http://www.techradar.com/news/computing-components/processors/google-s-tensor-processing-unit-explained-\this-is-what-the-future-of-computing-looks-\like-1326915
http://www.techradar.com/news/computing-components/processors/google-s-tensor-processing-unit-explained-\this-is-what-the-future-of-computing-looks-\like-1326915
https://www.sdxcentral.com/articles/news/intels-deep-learning-chips-will-arrive-2017/2016/11/
https://www.sdxcentral.com/articles/news/intels-deep-learning-chips-will-arrive-2017/2016/11/

Yuan, G., et al. C ir cnn: accelerating and compressing deep neural networks us-

ing block-circulant weight matrices. In Proceedings of the 50th Annual IEEE/ACM
International Symposium on Microarchitecture (2017), ACM, pp. 395–408.

[15] Dong, X., Chen, S., and Pan, S. Learning to prune deep neural networks via

layer-wise optimal brain surgeon. In Advances in Neural Information Processing
Systems (2017), pp. 4857–4867.

[16] Du, Z., Fasthuber, R., Chen, T., Ienne, P., Li, L., Luo, T., Feng, X., Chen, Y., and

Temam, O. Shidiannao: Shifting vision processing closer to the sensor. In Com-
puter Architecture (ISCA), 2015 ACM/IEEE 42nd Annual International Symposium
on (2015), IEEE, pp. 92–104.

[17] Goodfellow, I., Bengio, Y., Courville, A., and Bengio, Y. Deep learning, vol. 1.
MIT press Cambridge, 2016.

[18] Guo, K., Han, S., Yao, S., Wang, Y., Xie, Y., and Yang, H. Software-hardware

codesign for efficient neural network acceleration. In Proceedings of the 50th
Annual IEEE/ACM International Symposium on Microarchitecture (2017), IEEE
Computer Society, pp. 18–25.

[19] Guo, Y., Yao, A., and Chen, Y. Dynamic network surgery for efficient dnns. In

Advances In Neural Information Processing Systems (2016), pp. 1379–1387.
[20] Han, S., Kang, J., Mao, H., Hu, Y., Li, X., Li, Y., Xie, D., Luo, H., Yao, S., Wang, Y.,

et al. Ese: Efficient speech recognition engine with sparse lstm on fpga. In Pro-
ceedings of the 2017 ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays (2017), ACM, pp. 75–84.

[21] Han, S., Liu, X., Mao, H., Pu, J., Pedram, A., Horowitz, M. A., and Dally, W. J.

Eie: efficient inference engine on compressed deep neural network. In Computer
Architecture (ISCA), 2016 ACM/IEEE 43rd Annual International Symposium on
(2016), IEEE, pp. 243–254.

[22] Han, S., Mao, H., and Dally, W. J. Deep compression: Compressing deep neural

networks with pruning, trained quantization and huffman coding. In International
Conference on Learning Representations (ICLR) (2016).

[23] Han, S., Pool, J., Narang, S., Mao, H., Gong, E., Tang, S., Elsen, E., Vajda, P.,

Paluri, M., Tran, J., et al. Dsd: Dense-sparse-dense training for deep neural

networks. In International Conference on Learning Representations (ICLR) (2017).
[24] Han, S., Pool, J., Tran, J., and Dally, W. Learning both weights and connections

for efficient neural network. In Advances in neural information processing systems
(2015), pp. 1135–1143.

[25] He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learning for image recog-

nition. In Proceedings of the IEEE conference on computer vision and pattern
recognition (2016), pp. 770–778.

[26] He, Y., Zhang, X., and Sun, J. Channel pruning for accelerating very deep

neural networks. In Computer Vision (ICCV), 2017 IEEE International Conference
on (2017), IEEE, pp. 1398–1406.

[27] Hubara, I., Courbariaux,M., Soudry, D., El-Yaniv, R., and Bengio, Y. Binarized

neural networks. In Advances in neural information processing systems (2016),
pp. 4107–4115.

[28] Judd, P., Albericio, J., Hetherington, T., Aamodt, T. M., and Moshovos, A.

Stripes: Bit-serial deep neural network computing. In Proceedings of the 49th
Annual IEEE/ACM International Symposium on Microarchitecture (2016), IEEE
Computer Society, pp. 1–12.

[29] Kingma, D., and Ba, L. Adam: A method for stochastic optimization. In Interna-
tional Conference on Learning Representations (ICLR) (2016).

[30] Krizhevsky, A., Sutskever, I., and Hinton, G. E. Imagenet classification with

deep convolutional neural networks. In Advances in neural information processing
systems (2012), pp. 1097–1105.

[31] Kwon, H., Samajdar, A., and Krishna, T. Maeri: Enabling flexible dataflow map-

ping over dnn accelerators via reconfigurable interconnects. In Proceedings of the
Twenty-Third International Conference on Architectural Support for Programming
Languages and Operating Systems (2018), ACM, pp. 461–475.

[32] LeCun, Y., et al. Lenet-5, convolutional neural networks. URL: http://yann. lecun.
com/exdb/lenet (2015), 20.

[33] Leng, C., Li, H., Zhu, S., and Jin, R. Extremely low bit neural network: Squeeze

the last bit out with admm. arXiv preprint arXiv:1707.09870 (2017).
[34] Lin, D., Talathi, S., and Annapureddy, S. Fixed point quantization of deep

convolutional networks. In International Conference on Machine Learning (2016),

pp. 2849–2858.

[35] Mahajan, D., Park, J., Amaro, E., Sharma, H., Yazdanbakhsh, A., Kim, J. K., and

Esmaeilzadeh, H. Tabla: A unified template-based framework for accelerating

statistical machine learning. In High Performance Computer Architecture (HPCA),
2016 IEEE International Symposium on (2016), IEEE, pp. 14–26.

[36] Mao, H., Han, S., Pool, J., Li, W., Liu, X., Wang, Y., and Dally, W. J. Exploring

the regularity of sparse structure in convolutional neural networks. arXiv preprint
arXiv:1705.08922 (2017).

[37] Moons, B., Uytterhoeven, R., Dehaene, W., and Verhelst, M. 14.5 envision: A

0.26-to-10tops/w subword-parallel dynamic-voltage-accuracy-frequency-scalable

convolutional neural network processor in 28nm fdsoi. In Solid-State Circuits
Conference (ISSCC), 2017 IEEE International (2017), IEEE, pp. 246–247.

[38] Ouyang, H., He, N., Tran, L., and Gray, A. Stochastic alternating direction

method of multipliers. In International Conference on Machine Learning (2013),

pp. 80–88.

[39] Parashar, A., Rhu, M., Mukkara, A., Puglielli, A., Venkatesan, R., Khailany,

B., Emer, J., Keckler, S.W., andDally,W. J. Scnn: An accelerator for compressed-

sparse convolutional neural networks. In ACM SIGARCH Computer Architecture
News (2017), vol. 45, ACM, pp. 27–40.

[40] Park, E., Ahn, J., and Yoo, S. Weighted-entropy-based quantization for deep

neural networks. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (2017), pp. 7197–7205.

[41] Qiu, J., Wang, J., Yao, S., Guo, K., Li, B., Zhou, E., Yu, J., Tang, T., Xu, N., Song,

S., et al. Going deeper with embedded fpga platform for convolutional neural

network. In Proceedings of the 2016 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays (2016), ACM, pp. 26–35.

[42] Rastegari, M., Ordonez, V., Redmon, J., and Farhadi, A. Xnor-net: Imagenet

classification using binary convolutional neural networks. In European Conference
on Computer Vision (2016), Springer, pp. 525–542.

[43] Reagen, B., Whatmough, P., Adolf, R., Rama, S., Lee, H., Lee, S. K., Hernández-

Lobato, J. M., Wei, G.-Y., and Brooks, D. Minerva: Enabling low-power, highly-

accurate deep neural network accelerators. In Computer Architecture (ISCA), 2016
ACM/IEEE 43rd Annual International Symposium on (2016), IEEE, pp. 267–278.

[44] Sharma, H., Park, J., Mahajan, D., Amaro, E., Kim, J. K., Shao, C., Mishra, A.,

and Esmaeilzadeh, H. From high-level deep neural models to fpgas. In Proceed-
ings of the 49th Annual IEEE/ACM International Symposium on Microarchitecture
(2016), IEEE Computer Society, pp. 1–13.

[45] Sim, J., Park, J.-S., Kim, M., Bae, D., Choi, Y., and Kim, L.-S. 14.6 a 1.42 tops/w deep

convolutional neural network recognition processor for intelligent ioe systems.

In Solid-State Circuits Conference (ISSCC), 2016 IEEE International (2016), IEEE,
pp. 264–265.

[46] Simonyan, K., and Zisserman, A. Very deep convolutional networks for large-

scale image recognition. arXiv preprint arXiv:1409.1556 (2014).
[47] Simonyan, K., and Zisserman, A. Very deep convolutional networks for large-

scale image recognition. In International Conference on Learning Representations
(ICLR) (2015).

[48] Song, M., Zhong, K., Zhang, J., Hu, Y., Liu, D., Zhang, W., Wang, J., and Li,

T. In-situ ai: Towards autonomous and incremental deep learning for iot sys-

tems. In High Performance Computer Architecture (HPCA), 2018 IEEE International
Symposium on (2018), IEEE, pp. 92–103.

[49] Suda, N., Chandra, V., Dasika, G., Mohanty, A., Ma, Y., Vrudhula, S., Seo,

J.-s., and Cao, Y. Throughput-optimized opencl-based fpga accelerator for large-

scale convolutional neural networks. In Proceedings of the 2016 ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays (2016), ACM, pp. 16–

25.

[50] Suzuki, T. Dual averaging and proximal gradient descent for online alternating

direction multiplier method. In International Conference on Machine Learning
(2013), pp. 392–400.

[51] Umuroglu, Y., Fraser, N. J., Gambardella, G., Blott, M., Leong, P., Jahre, M.,

and Vissers, K. Finn: A framework for fast, scalable binarized neural network

inference. In Proceedings of the 2017 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays (2017), ACM, pp. 65–74.

[52] Venkataramani, S., Ranjan, A., Banerjee, S., Das, D., Avancha, S., Jagan-

nathan, A., Durg, A., Nagaraj, D., Kaul, B., Dubey, P., et al. Scaledeep: A

scalable compute architecture for learning and evaluating deep networks. In Com-
puter Architecture (ISCA), 2017 ACM/IEEE 44th Annual International Symposium
on (2017), IEEE, pp. 13–26.

[53] Wen, W., Wu, C., Wang, Y., Chen, Y., and Li, H. Learning structured sparsity

in deep neural networks. In Advances in Neural Information Processing Systems
(2016), pp. 2074–2082.

[54] Whatmough, P. N., Lee, S. K., Lee, H., Rama, S., Brooks, D., and Wei, G.-Y. 14.3

a 28nm soc with a 1.2 ghz 568nj/prediction sparse deep-neural-network engine

with> 0.1 timing error rate tolerance for iot applications. In Solid-State Circuits
Conference (ISSCC), 2017 IEEE International (2017), IEEE, pp. 242–243.

[55] Wu, J., Leng, C., Wang, Y., Hu, Q., and Cheng, J. Quantized convolutional neural

networks for mobile devices. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (2016), pp. 4820–4828.

[56] Yang, T.-J., Chen, Y.-H., and Sze, V. Designing energy-efficient convolutional

neural networks using energy-aware pruning. In Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition (2017), pp. 6071–6079.

[57] Ye, S., Zhang, T., Zhang, K., Li, J., Xie, J., Liang, Y., Liu, S., Lin, X., andWang, Y.

A unified framework of dnn weight pruning and weight clustering/quantization

using admm. arXiv preprint arXiv:1811.01907 (2018).

[58] Yu, J., Lukefahr, A., Palframan, D., Dasika, G., Das, R., andMahlke, S. Scalpel:

Customizing dnn pruning to the underlying hardware parallelism. In Computer
Architecture (ISCA), 2017 ACM/IEEE 44th Annual International Symposium on
(2017), IEEE, pp. 548–560.

[59] Yu, X., Liu, T., Wang, X., and Tao, D. On compressing deep models by low rank

and sparse decomposition. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (2017), pp. 7370–7379.

[60] Yuan, Z., Yue, J., Yang, H., Wang, Z., Li, J., Yang, Y., Guo, Q., Li, X., Chang, M.-F.,

Yang, H., et al. Sticker: A 0.41-62.1 tops/w 8bit neural network processor with

multi-sparsity compatible convolution arrays and online tuning acceleration for

12

fully connected layers. In 2018 IEEE Symposium on VLSI Circuits (2018), IEEE,
pp. 33–34.

[61] Zhang, C., Fang, Z., Zhou, P., Pan, P., and Cong, J. Caffeine: towards uniformed

representation and acceleration for deep convolutional neural networks. In

Proceedings of the 35th International Conference on Computer-Aided Design (2016),

ACM, p. 12.

[62] Zhang, C., Wu, D., Sun, J., Sun, G., Luo, G., and Cong, J. Energy-efficient

cnn implementation on a deeply pipelined fpga cluster. In Proceedings of the
2016 International Symposium on Low Power Electronics and Design (2016), ACM,

pp. 326–331.

[63] Zhang, D., Wang, H., Figueiredo, M., and Balzano, L. Learning to share:

Simultaneous parameter tying and sparsification in deep learning.

[64] Zhang, T., Ye, S., Zhang, K., Tang, J., Wen, W., Fardad, M., and Wang, Y. A

systematic dnn weight pruning framework using alternating direction method

of multipliers. arXiv preprint arXiv:1804.03294 (2018).
[65] Zhao, R., Song, W., Zhang, W., Xing, T., Lin, J.-H., Srivastava, M., Gupta,

R., and Zhang, Z. Accelerating binarized convolutional neural networks with

software-programmable fpgas. In Proceedings of the 2017 ACM/SIGDA Interna-
tional Symposium on Field-Programmable Gate Arrays (2017), ACM, pp. 15–24.

[66] Zhou, A., Yao, A., Guo, Y., Xu, L., and Chen, Y. Incremental network quan-

tization: Towards lossless cnns with low-precision weights. In International
Conference on Learning Representations (ICLR) (2017).

[67] Zhu, C., Han, S., Mao, H., and Dally, W. J. Trained ternary quantization. In

International Conference on Learning Representations (ICLR) (2017).

13

	Abstract
	1 Introduction
	2 Background
	2.1 Related Work on Weight Pruning and Quantization
	2.2 Basics of ADMM

	3 ADMM Framework for Joint Weight Pruning and Quantization
	3.1 Problem Formulation
	3.2 ADMM-based Solution Framework
	3.3 Solution to Weight Pruning and Quantization, and the Joint Problem
	3.4 Details in Parameter Determination

	4 Results and Discussions on DNN Model Compressions
	4.1 Results on ADMM-based Weight Pruning
	4.2 Results on ADMM-based Joint Weight Pruning and Quantization for DNNs
	4.3 Making AlexNet and VGGNet On-Chip

	5 Hardware-Aware Computation Reduction
	5.1 Algorithm-Hardware Co-Optimization

	6 Results and Discussions on Computation Reduction and Hardware-Aware Optimizations
	6.1 Computation Reduction Comparisons
	6.2 Synthesized Hardware Speedup Comparisons

	7 Conclusion
	Acknowledgments
	References

